Zadania.info Największy internetowy zbiór zadań z matematyki

/Konkursy/Zadania/Nierówności

Wyszukiwanie zadań

Wykaż, że dla dowolnych dodatnich liczb x,y ,z spełniona jest nierówność

 ( 1 1 1 ) (x + y + z) -+ --+ -- ≥ 9 x y z

Uzasadnij, że jeżeli a,b,c,d są liczbami dodatnimi to

 √ ----- (a + b)(c + d) ≥ 4 abcd.

Udowodnij, że jeżeli a > 0 to dla wszystkich x ∈ R spełniona jest nierówność ax + a−x ≥ 2 .

Uzasadnij, że jeżeli a,b,c,d są liczbami dodatnimi to

∘ -------------- √ --- √ --- (a+ c)(b+ d ) ≥ ab+ cd.
Ukryj Podobne zadania

Udowodnij, że dla każdych dwóch liczb rzeczywistych x ≥ 1 i y ≥ 1 prawdziwa jest nierówność

(x+ y)(x2 − xy + y2 + 3) ≥ 2(x 2 + xy + y2 + 1).
Ukryj Podobne zadania

Udowodnij, że dla każdych dwóch liczb rzeczywistych x ≥ 1 i y ≥ 1 prawdziwa jest nierówność

x (x2 − 2x + 3)+ y(y2 − 2y + 3) ≥ 2xy + 2.

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x2y2 + 2x 2 + 2y 2 − 8xy + 4 > 0.
Ukryj Podobne zadania

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x 2y2 + 3x2 + 3y2 − 12xy + 9 > 0.

Udowodnij, że dla dowolnych różnych liczb rzeczywistych x,y prawdziwa jest nierówność

x4 − 8xy + 4y2 + 4 > 0.

Wykaż że jeżeli x,y,z są liczbami rzeczywistymi oraz x + y + z = 1 , to x 2 + y2 + z2 ≥ 13 .

Przedstaw liczbę 20 jako sumę trzech liczb dodatnich tak, aby iloczyn tych liczb był jak największy.

Wykaż, że dla dowolnych dodatnich liczb rzeczywistych x i y prawdziwa jest nierówność

∘ -------- ∘ -------- 1 1 1 1 1 1 --+ ---⋅ --+ ---− √---- ≥ ---. x xy y xy xy xy

Udowodnij, że dla dowolnych liczb a,b,c ∈ R + zachodzi nierówność

 ( 1 1 1) (a + b+ c) --+ -+ -- ≥ 9. a b c

Niech n będzie liczbą naturalną, a x i y dodatnimi liczbami rzeczywistymi takimi, że xn + yn = 1 . Udowodnij nierówność:

( ) ( ) n 1+-x-2k n 1+-y-2k ------1-------- ∑ 1+ x 4k ∑ 1+ y 4k < (1− x)(1 − y). k=1 k=1

Wykaż, że dla dowolnych dodatnich liczb rzeczywistych a,b prawdziwa jest nierówność

 ∘ --- ∘ --- √ -- √ -- a2- b2- a + b ≤ b + a .

Udowodnij, że dla dowolnych liczb a,b,c ∈ R + zachodzi nierówność

 2 2 2 a + b + c ≥ ab + ac + bc.

Funkcja  3 2 f(x) = x + ax + bx+ c ma trzy różne miejsca zerowe: p,q,r . Wykaż, że

f ′(p )⋅f ′(q) ⋅f′(r) < 0.

Udowodnić, że dla dowolnych nieujemnych liczb rzeczywistych a,b,c prawdziwa jest nierówność

 √ ----- √ ----- √ ---- 4( a3b3 + b3c3 + c3a3) ≤ 4c3 + (a+ b)3.
Ukryj Podobne zadania

Udowodnij, że dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej y prawdziwa jest nierówność

x(x − 3 )+ y (y− 3) ≥ xy − 9.

Wykaż, że jeżeli x,y,z są długościami boków trójkąta to √ 3(x+y +z) ∘ ------------ ----2-----> x 2 + y 2 + z2 .

spinner