Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 6043486

Dwusieczne kątów BAD i BCD czworokąta wypukłego ABCD przecinają się w punkcie E , przy czym punkty B i E leżą po przeciwnych stronach prostej AC (zobacz rysunek).


PIC


Wykaż, że |∡ABC |− |∡ADC |+ 2 ⋅|∡AEC | = 3 60∘ .

Wersja PDF
Rozwiązanie

Oznaczmy ∡BAD = 2α , ∡BCD = 2 γ i ∡ABC = β .


PIC


Z czworokąta ABCE mamy

∡AEC = 360 ∘ − α − β − γ,

a z czworokąta ABCD

∡ADC = 360 ∘ − 2 α− β− 2γ.

Zatem

∡ABC −∡ADC + 2 ⋅∡AEC = = β− (360∘ − 2α − β − 2 γ)+ 2(360∘ − α − β − γ ) = 360∘.
Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!