Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia

Wyszukiwanie zadań

W trójkącie jeden z kątów jest o  ∘ 2 0 większy od najmniejszego, a trzeci kąt jest trzykrotnie większy od najmniejszego. Najmniejszy z kątów tego trójkąta ma miarę
A) 32∘ B) 3 6∘ C) 40∘ D)  ∘ 54

Ukryj Podobne zadania

W trójkącie jeden z kątów jest o  ∘ 3 0 większy od najmniejszego, a trzeci kąt jest trzykrotnie większy od najmniejszego. Najmniejszy z kątów tego trójkąta ma miarę
A) 32∘ B) 3 0∘ C) 40∘ D)  ∘ 54

Jeden z kątów trójkąta jest trzy razy większy od drugiego. Miara trzeciego kąta jest o 40∘ większa od miary najmniejszego kąta w tym trójkącie. Miary kątów tego trójkąta są równe
A) 24∘,4 4∘,72∘ B) 28∘,68 ∘,84∘ C)  ∘ ∘ ∘ 35 ,10 5 ,40 D)  ∘ ∘ ∘ 20 ,60 ,10 0

W trójkącie jeden z kątów jest o  ∘ 6 0 większy od najmniejszego, a trzeci kąt jest czterokrotnie większy od najmniejszego. Najmniejszy z kątów tego trójkąta ma miarę
A) 12∘ B) 3 0∘ C) 15∘ D)  ∘ 20

W trapezie równoramiennym krótsza podstawa i ramię mają taką samą długość. Przekątna trapezu tworzy z jednym z ramion kąt prosty. Oblicz miary kątów tego trapezu.

W klasie jest cztery razy więcej chłopców niż dziewcząt. Ile procent wszystkich uczniów tej klasy stanowią dziewczęta?
A) 4% B) 5% C) 20% D) 25%

Ukryj Podobne zadania

W loterii fantowej jest 9 razy więcej losów przegrywających niż wygrywających. Ile procent wszystkich losów w tej loterii stanowią losy wygrywające?
A) 1% B) 11% C) 10% D) 90%

Liczby x = 1 i x = − 2 są pierwiastkami wielomianu  4 3 2 ax + 2x − 3ax + 2ax − 6x + 4 . Wiedząc, że wielomian ten jest kwadratem wielomianu stopnia 2, oblicz a .

W koszu znajdują się owoce: 12 jabłek i 8 pomarańczy. Wyjmujemy kolejno trzy owoce, nie odkładając ich do kosza. Jakie jest prawdopodobieństwo, że wylosujemy dokładnie dwie pomarańcze.

Ukryj Podobne zadania

W pudełku jest 7 kul białych i 3 czarne. Doświadczenie polega na wylosowaniu 3 kul. Jakie jest prawdopodobieństwo wylosowania co najwyżej dwóch kul białych?

Ze zbioru liczb 3, 4, 1, 5, 1, 3, 1 usunięto jedną liczbę w ten sposób, że mediana tego zbioru liczb nie uległa zmianie. Usunięta liczba to
A) 1 B) 3 C) 4 D) 5

Równanie  2 x + 6x + c = 0 nie ma rozwiązania, gdy
A) c ∈ (− ∞ ,9) B) c ∈ (9,+ ∞ ) C) c ∈ ⟨9,+ ∞ ) D) c ∈ (− ∞ ,9⟩

Ukryj Podobne zadania

Równanie  2 x + 6x − c = 0 nie ma rozwiązania, gdy
A) c ∈ (− ∞ ,− 9) B) c ∈ (9,+ ∞ ) C) c ∈ ⟨− 9,+ ∞ ) D) c ∈ (− ∞ ,9⟩

Równanie  2 x + 4x + c = 0 nie ma rozwiązania, gdy
A) c ∈ (4,+ ∞ ) B) c ∈ (− ∞ ,4) C) c ∈ ⟨4,+ ∞ ) D) c ∈ (− ∞ ,4⟩

W równoległoboku ABCD przekątne przecinają się w punkcie S . Niech P1 oznacza pole trójkąta ASD , natomiast P2 oznacza pole trójkąta DSC . Wówczas:
A) P = P 1 2 B) P > P 1 2 C) P1 < P 2 D) P1 = P 2 tylko wtedy, gdy |AC | = |DB |

Ukryj Podobne zadania

W równoległoboku ABCD przekątne przecinają się w punkcie S . Niech P1 oznacza pole trójkąta ASD , natomiast P2 oznacza pole trójkąta ABS . Wówczas:
A) P > P 1 2 B) P = P 1 2 C) P1 < P 2 D) P1 = P 2 tylko wtedy, gdy |AC | = |DB |

Cięciwy AB i CD okręgu o środku O przecinają się w punkcie P i tworzą trójkąty AP C i BP D .


PIC


Trójkąty AP C i BP D

A) podobne,B) przystające,

ponieważ trójkąty te mają równe

1) pola,2) miary kątów,3) długości boków,

Rzucamy 3 razy kostką do gry. Oblicz prawdopodobieństwo, że kolejno otrzymane liczby utworzą ciąg arytmetyczny.

Ukryj Podobne zadania

Rzucamy 3 razy kostką do gry. Oblicz prawdopodobieństwo, że kolejno otrzymane liczby utworzą ciąg geometryczny.

Gdy przesuniemy wykres funkcji f(x) = 3x − 2 o 3 jednostki w prawo i 2 jednostki w górę, to otrzymamy wykres funkcji opisanej wzorem
A) y = 3x − 9 B) y = 3x − 13 C) y = 3x + 9 D) y = 3x+ 5

Ukryj Podobne zadania

Aby otrzymać wykres funkcji y = 5(x + 1 )− 7 , należało wykres funkcji y = 5x przesunąć
A) o 1 jednostkę w lewo i 7 ku dołowi B) o 1 jednostkę w prawo i 7 ku górze
C) o 1 jednostkę w prawo i 7 ku dołowi D) o 1 jednostkę w lewo i 7 ku górze

Gdy przesuniemy wykres funkcji f(x) = 3x − 2 o 3 jednostki w lewo i 2 jednostki w dół, to otrzymamy wykres funkcji opisanej wzorem
A) y = 3x − 9 B) y = 3x − 13 C) y = 3x + 9 D) y = 3x+ 5

Punkty K = (4,− 10) i L = (b,2) są końcami odcinka KL . Pierwsza współrzędna środka odcinka KL jest równa (− 12) . Wynika stąd, że
A) b = − 2 8 B) b = − 14 C) b = − 24 D) b = − 10

Tabela przedstawia pewne dane i ich liczebność

Wartość danej-424720
Liczebność 7 236 2
  1. Oblicz średnią arytmetyczną tych danych.
  2. Podaj medianę.
  3. Oblicz odchylenie standardowe.

Wykres funkcji homograficznej  -ax+3- f(x ) = x+b+ 1 można otrzymać przesuwając wykres funkcji g(x) = 7x , a dziedzina funkcji f(x) jest tym samym zbiorem co jej zbiór wartości. Wyznacz współczynniki a i b .

Wykres funkcji  x−3 f(x ) = 2 przedstawiony jest na rysunku:


PIC


Ukryj Podobne zadania

Wykres funkcji  ( )x −3 f(x ) = 12 przedstawiony jest na rysunku:


PIC


Wykres funkcji  −x f(x ) = 3⋅3 przedstawiony jest na rysunku:


PIC


Wykres funkcji  ( )x −3 f(x ) = 12 przedstawiony jest na rysunku


PIC


Wykaż, że nie istnieje kąt α , taki, że  3 cos α = 5 i  3 tgα = 4 .

Liczba  √ -- 4 ( 2 + 1 ) jest większa od liczby  √ -- 4 ( 2− 1) o
A) 2 B)  √ -- 12 2 C)  √ -- 24 2 D)  √ -- 4 2

Pole powierzchni bocznej walca wynosi  2 18π cm . Wysokość walca jest 3 razy większa od promienia podstawy. Zatem pole powierzchni podstawy tego walca jest równe
A) 3π cm 2 B) 6π cm 2 C)  2 9π cm D)  2 12π cm

Niech P1 będzie prostokątem o polu S i stosunku długości boków równym 3:2. Konstruujemy kolejno prostokąty P2,P3,P 4... podobne do prostokąta P1 takie, że dłuższy bok kolejnego prostokąta jest równy krótszemu bokowi poprzedniego prostokąta. Oblicz sumę pól prostokątów P 1,P 2,P3,P4,P5 .

Odcinek AB jest średnicą okręgu (rysunek).


PIC


Miara kąta α jest równa
A) 58∘ B) 5 6∘ C) 60∘ D) 116∘

Strona 460 z 461
spinner