Okrąg przecina boki czworokąta kolejno w punktach (zobacz rysunek).
Wykaż, że jeżeli , to w czworokąt można wpisać okrąg.
Okrąg przecina boki czworokąta kolejno w punktach (zobacz rysunek).
Wykaż, że jeżeli , to w czworokąt można wpisać okrąg.
Kąt ostry między przekątnymi równoległoboku ma miarę . Przekątna ma długość 6, a przekątna jest prostopadła do boku . Oblicz długości boków równoległoboku.
W czworokącie wypukłym (zobacz rysunek poniżej) dane są kąty: oraz . Wykaż, że .
Na bokach i kwadratu o boku długości 1 wybrano punkty i w ten sposób, że i , dla . Niech będzie punktem przecięcia odcinków i
Dany jest trapez prostokątny o podstawach i , w którym boki i są prostopadłe. Dwusieczne kątów i przecinają się w punkcie leżącym na boku . Wykaż, że .
Ramię trapezu równoramiennego ma długość . Przekątne w tym trapezie są prostopadłe, a punkt ich przecięcia dzieli je w stosunku 2:3. Oblicz pole tego trapezu.
Dany jest prostokąt o polu 12, w którym długość przekątnej jest liczbą z przedziału . Wykaż, że obwód tego prostokąta jest liczbą z przedziału .
Na bokach i rombu wybrano odpowiednio punkty i tak, że . Pole pięciokąta jest 17 razy większe niż pole trójkąta . Punkt jest punktem wspólnym odcinka i przekątnej . Oblicz Oblicz .
Na bokach , i kwadratu wybrano punkty , i ten sposób, że , , oraz .
Pole rombu jest równe 120. Gdyby zwiększyć długości jego przekątnych odpowiednio o 2 i 5 to pole wzrosłoby o 55. Oblicz obwód rombu. Podaj wszystkie możliwe odpowiedzi.
W prostokąt wpisano trzy parami styczne okręgi w ten sposób, że dwa z nich są styczne do trzech boków, prostokąta, a trzeci jest styczny do jednego z boków prostokąta (patrz rysunek). Oblicz promień mniejszego okręgu jeżeli promień większego okręgu jest równy .
Przekątne czworokąta są prostopadłe. Wykaż, że .
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że .
Dany jest czworokąt wypukły niebędący równoległobokiem. Punkty są odpowiednio środkami boków i . Punkty są odpowiednio środkami przekątnych i . Uzasadnij, że czworokąt jest równoległobokiem.
W prostokącie , w którym stosunek długości boków i jest równy 4:3, poprowadzono dwusieczne kątów i . Dwusieczne te przecinają boki i odpowiednio w punktach i . Oblicz stosunek pola prostokąta do pola trójkąta .
Wszystkie wierzchołki czworokąta leżą na okręgu oraz . Oblicz miarę kąta .
W okrąg o promieniu wpisano czworokąt tak, że oraz . Oblicz obwód czworokąta jeżeli jego pole jest równe 192.
Na zewnątrz kwadratu na bokach i zbudowano trójkąty równoboczne i . Uzasadnij, że trójkąt jest równoboczny.
Długość ramienia trapezu jest równa , a odległość od niego środka przeciwległego ramienia jest równa . Wyznacz pole trapezu.
W kole o promieniu poprowadzono średnicę i równoległą do niej cięciwę . Oblicz pole powstałego trapezu , jeżeli kąt ostry tego trapezu ma miarę .
Różnica kwadratów długości przekątnych trapezu prostokątnego wynosi 21, jego wysokość ma długość 4, a dłuższe ramię ma długość 5. Oblicz pole trapezu.