Przeciwległe boki czworokąta wpisanego w okrąg przecinają się w punktach i (zobacz rysunek), przy czym odcinek jest zawarty w dwusiecznej kąta , a odcinek jest zawarty w dwusiecznej kąta . Wykaż, że .
Przeciwległe boki czworokąta wpisanego w okrąg przecinają się w punktach i (zobacz rysunek), przy czym odcinek jest zawarty w dwusiecznej kąta , a odcinek jest zawarty w dwusiecznej kąta . Wykaż, że .
W trapez prostokątny można wpisać okrąg. Jedna z jego podstaw ma długość , druga jest trzy razy dłuższa. Oblicz pole trapezu oraz długość odcinka łączącego środki ramion trapezu.
Na rysunku przedstawiono kwadrat . Punkty i są środkami boków i . Uzasadnij, że odcinki i są prostopadłe.
Punkt jest środkiem boku prostokąta , w którym . Punkt leży na boku tego prostokąta oraz . Udowodnij, że .
Dany jest prostokąt o polu . Gdyby zwiększyć długość jednego z boków o 2 cm, a drugi bok zmniejszyć o 3 cm, to pole nie ulegnie zmianie. Oblicz długości boków danego prostokąta.
Dany jest prostokąt o polu . Gdyby zwiększyć długość jednego z boków o 8 cm, a drugi bok zmniejszyć o 3 cm, to pole nie ulegnie zmianie. Oblicz długości boków danego prostokąta.
Przekątne trapezu przecinają się w punkcie , jego podstawy mają długości i , a wysokość trapezu ma długość 8. Punkt jest środkiem odcinka (zobacz rysunek).
Oblicz pole trójkąta .
Krótsza podstawa trapezu ma długość 2, a ramiona długości i 4 tworzą z dłuższą podstawą kąty o miarach i . Oblicz pole trapezu.
Krótsza podstawa trapezu ma długość , a ramiona długości i 6 tworzą z dłuższą podstawą kąty o miarach i odpowiednio. Oblicz pole trapezu.
Długości boków równoległoboku wynoszą 1 i , a kąt przy wierzchołku ma miarę . Oblicz promień okręgu opisanego na trójkącie .
O ile procent zmniejszy się pole rombu, jeśli jedną przekątną rombu zwiększymy o 20%, a drugą przekątną skrócimy o 40%?
Dwusieczne czworokąta wpisanego w okrąg przecinają się w czterech różnych punktach: (zobacz rysunek).
Wykaż, że na czworokącie można opisać okrąg.
Z wierzchołków czworokąta poprowadzono półproste, które przecinają się w wierzchołkach czworokąta wpisanego w okrąg (zobacz rysunek).
Wykaż, że jeżeli półproste i są dwusiecznymi odpowiednio kątów i , to półprosta jest dwusieczną kąta .
Dany jest prostokąt , którego jeden bok jest dwa razy dłuższy od drugiego. Na boku zbudowano trójkąt równoboczny (zobacz rysunek). Punkt jest takim punktem odcinka , że . Udowodnij, że punkt jest środkiem odcinka .
Długości boków czworokąta są równe: . Na czworokącie opisano okrąg. Oblicz długość przekątnej tego czworokąta.
Długości boków czworokąta są równe: . Na czworokącie opisano okrąg. Oblicz długość przekątnej tego czworokąta.
Dany jest trapez prostokątny (zobacz rysunek).
Wyznacz obwód tego trapezu, jeżeli miara kąta przy wierzchołku wynosi .
Punkt leży wewnątrz prostokąta (zob. rysunek). Udowodnij, że .
Dany jest kwadrat . Przekątne i przecinają się w punkcie . Punkty i są środkami odcinków – odpowiednio – i . Punkty i leżą na przekątnej tak, że i (zobacz rysunek). Wykaż, że stosunek pola czworokąta do pola kwadratu jest równy 1:3.
Dany jest kwadrat . Przekątne i przecinają się w punkcie . Punkty i są środkami odcinków – odpowiednio – i . Punkty i leżą na przekątnej tak, że i (zobacz rysunek). Wykaż, że stosunek pola czworokąta do pola kwadratu jest równy 3:8.
Koło i kwadrat mają równe obwody. Wykaż, że pierwsza z tych figur ma większe pole.
Niech i będą długościami kolejnych boków równoległoboku , zaś i długościami jego przekątnych. Wykaż, że .
Wykaż, że jeżeli w czworokącie dwusieczne kątów przy wierzchołkach i przecinają dwusieczne kątów przy wierzchołkach i w czterech różnych punktach, to punkty te leżą na pewnym okręgu.
W trójkącie równoramiennym dane są długości podstawy cm i wysokości cm. W trójkąt ten wpisano prostokąt w ten sposób, że dwa wierzchołki prostokąta leżą na podstawie, a po jednym na każdym ramieniu trójkąta, przy czym przekątne prostokąta są równoległe do ramion trójkąta. Oblicz długości boków prostokąta.
W czworokącie wypukłym poprowadzono przekątną . Okręgi wpisane w trójkąty i są styczne zewnętrznie. Wykaż, że w czworokąt można wpisać okrąg.