Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Planimetria/Czworokąt

Wyszukiwanie zadań

Na przekątnej BD równoległoboku ABCD obrano dowolny punkt P . Wykaż, że pola trójkątów AP D i CDP są równe.

Ukryj Podobne zadania

Na przekątnej AC równoległoboku ABCD zaznaczono dowolny punkt P . Udowodnij, że pola trójkątów ABP i ADP są równe.

Dany jest czworokąt ABCD , w którym |BC | = |CD | = |AD | = 1 3 .


PIC


Przekątna BD tego czworokąta ma długość 10 i jest prostopadła do boku AD . Oblicz pole czworokąta ABCD .

Oblicz pole rombu, którego jeden z kątów wewnętrznych wynosi  ∘ 60 , a przekątna poprowadzona z wierzchołka tego kąta ma długość 20 cm.

Pole trapezu jest równe P , a stosunek długości podstaw trapezu wynosi 2. Przekątne dzielą ten trapez na cztery trójkąty. Oblicz pole każdego z tych trójkątów.

W trapezie ABCD podstawy AB i CD oraz ramię AD mają długości odpowiednio 15 cm, 12 cm i 6 cm. O ile centymetrów należy przedłużyć ramię AD , by przecięło się z przedłużeniem ramienia BC ?

Ukryj Podobne zadania

Dany jest romb, którego kąt ostry ma miarę  ∘ 30 , a jego pole jest równe 1 8 . Oblicz wysokość tego rombu.

Oblicz wysokość trapezu o podstawach długości 18 i 14 oraz ramionach długości 3.

W równoległoboku ABCD , w którym  ∘ |AB | = 6, |BC | = 5, ∡BAD = 60 poprowadzono wysokości BE i BF na boki AD i DC .

  • Wykonaj odpowiedni rysunek i oblicz długości odcinków BE i BF .
  • Oblicz pole trójkąta BEF .

W trapezie równoramiennym, który nie jest równoległobokiem, ramię ma długość 7 cm, a przekątna 8 cm. Oblicz długości podstaw trapezu wiedząc, że odcinek łączący środki ramion trapezu ma długość 4 cm.

Na trapezie opisano okrąg o średnicy długości 25 cm. Dłuższa podstawa trapezu jest średnicą tego okręgu. Wiedząc, że przekątna tego trapezu ma długość 20 cm, oblicz pole tego trapezu.

Niech P1 będzie prostokątem o bokach długości 3 i 8. Obok tego prostokąta rysujemy kolejne prostokąty P2,P3,P4,... w ten sposób, że każdy z boków kolejnego prostokąta jest o 2 dłuższy od odpowiadających boków poprzedniego prostokąta.


PIC


Wyznacz liczbę n , dla której obwód prostokąta Pn jest równy 246.

W trapezie równoramiennym długość krótszej podstawy wynosi 9 cm, przekątnej 17 cm a ramienia 10 cm. Oblicz jego pole.

Dany jest trapez opisany na okręgu, którego kąty przy jednej podstawie są ostre, oraz którego pole jest równe 168. Przekątne dzielą ten trapez na cztery trójkąty. Oblicz pole każdego z tych trójkątów jeżeli ramiona trapezu mają długości 13 i 15.

Dany jest prostokąt o bokach a i b oraz prostokąt o bokach c i d . Długość boku c to 90% długości boku a . Długość boku d to 120% długości boku b . Oblicz, ile procent pola prostokąta o bokach a i b stanowi pole prostokąta o bokach c i d .

Ukryj Podobne zadania

Dany jest prostokąt o bokach a i b oraz prostokąt o bokach c i d . Długość boku c to 80% długości boku a . Długość boku d to 140% długości boku b . Oblicz, ile procent pola prostokąta o bokach a i b stanowi pole prostokąta o bokach c i d .

Punkt E leży na ramieniu BC trapezu ABCD , w którym AB ∥ CD . Udowodnij, że ∡AED = ∡BAE + ∡CDE .

Dany jest romb ABCD o boku długości 26, w którym przekątna BD ma długość równą 20. Punkt E jest środkiem boku AD (zobacz rysunek).


PIC


Oblicz sinus kąta α , jaki odcinek BE tworzy z bokiem AB rombu ABCD .

Trapez równoramienny ABCD o ramieniu długości 6 wpisany jest w okrąg, przy czym dłuższa podstawa AB trapezu, o długości 12, jest średnicą tego okręgu. Przekątne AC i BD trapezu przecinają się w punkcie P . Oblicz pole koła wpisanego w trójkąt ABP .

Ukryj Podobne zadania

Trapez równoramienny ABCD o ramieniu długości 7 wpisany jest w okrąg, przy czym dłuższa podstawa AB trapezu, o długości 14, jest średnicą tego okręgu. Przekątne AC i BD trapezu przecinają się w punkcie P . Oblicz długość okręgu wpisanego w trójkąt CDP .

W romb, którego bok ma długość 5 cm, a kąt ostry ma miarę  ∘ 60 , wpisano okrąg. Oblicz pole czworokąta otrzymanego przez połączenie kolejnych punktów styczności tego okręgu z bokami rombu.

Ukryj Podobne zadania

W romb o boku 8 i kącie ostrym  ∘ 6 0 wpisano okrąg. Wyznacz pole prostokąta, którego wierzchołki leżą w punktach styczności okręgu z bokami rombu.

W równoległoboku ABCD przekątna BD ma długość √ ---- 19 3 , a wysokość BE dzieli bok AD na odcinki o długościach |AE | = 5 i |DE | = 7 (zobacz rysunek).


PIC


Oblicz długość wysokości CF tego równoległoboku.

Podaj wymiary prostokąta, którego boki różnią się o 6 cm, a przekątna ma długość 30 cm.

Strona 22 z 23
spinner