Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Funkcje

Wyszukiwanie zadań

Wyznacz wszystkie wartości parametru a ∈ R , dla których funkcja  ax−1- y = a−x jest rosnąca w każdym przedziale, na którym jest określona. Dla a = 2 wyznacz zbiór wartości funkcji.

Ukryj Podobne zadania

Kąt α jest ostry i  3 cosα = 5 . Oblicz wartość wyrażenia

 3 2 2 3 sin α+ sin α ⋅cos α − sin αc osα − cos α.

Kąt α jest ostry i  √5- cosα = 3 . Oblicz wartość wyrażenia  3 2 sin α− 3cos α .

Kąt α jest ostry i  √7- sin α = 4 . Oblicz wartość wyrażenia  3 2 cos α− 4sin α .

Reszta z dzielenia wielomianu W (x) przez wielomian  4 2 P (x) = x + 2x − 3 jest wielomianem R(x) = x3 − 2x2 + 2 . Wyznacz resztę z dzielenia tego wielomianu przez wielomian F (x) = x 2 − 1 .

Ukryj Podobne zadania

Wynikiem dzielenia wielomianu  3 2 6x − 11x − 3x + 2 przez dwumian 2x + 1 jest trójmian kwadratowy postaci ax2 + bx + c . Oblicz a,b i c .

W wyniku podzielenia wielomianu W (x) przez (x + 2) otrzymujemy iloraz Q (x) i resztę 0. Jeśli natomiast podzielimy wielomian W (x) przez (x + 1) , to otrzymamy iloraz Q (x)+ 2x − 3 i resztę 2.

  • Wyznacz wielomian W (x) .
  • Rozwiąż nierówność W (x) ≤ − (x + 1 )(x + 2) .

Wielomian  3 2 W (x) = x + cx − 10x + d jest podzielny przez dwumian P (x) = x + 2 . Przy dzieleniu wielomianu W (x) przez dwumian Q (x) = x− 1 otrzymujemy resztę (− 30) . Oblicz pierwiastki wielomianu W (x ) i rozwiąż nierówność W (x) ≥ 0 .

Wielomian  3 2 W (x) = x + bx + cx− 4 jest podzielny przez trójmian kwadratowy x2 − x − 2 . Wyznacz współczynniki b i c wielomianu W (x) .

Ukryj Podobne zadania

Wielomian  3 2 W (x) = x + bx + cx− 6 jest podzielny przez trójmian kwadratowy x2 + x − 2 . Wyznacz współczynniki b i c wielomianu W (x) .

Wyznacz wzór funkcji liniowej f , wiedząc że nie przyjmuje ona wartości dodatnich oraz f(2 2) = − 3 .

Dany jest wielomian  3 2 W (x) = x − 5x − 9x + 45 .

  • Sprawdź, czy punkt A = (1,3 0) należy do wykresu tego wielomianu.
  • Zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.

Dla jakiej wartości parametru m ∈ R funkcja  5 3 f(x ) = − 2x + mx + 28x + 2 ma ekstremum w punkcie x = 2 ?

Dany jest wielomian  3 2 W (x) = 2x + ax − 14x+ b .

  1. Dla a = 0 i b = 0 otrzymamy wielomian W (x) = 2x 3 − 14x . Rozwiąż równanie 2x 3 − 14x = 0 .
  2. Dobierz wartości a i b tak, aby wielomian W (x) był podzielny jednocześnie przez x− 2 oraz x+ 3 .

Funkcję kwadratową f można opisać wzorem mającym postać f (x) = 2x2 + 4x + m .

  • Wyznacz warunek, dla którego funkcja f ma dwa różne pierwiastki x ,x 1 2 , a następnie oblicz x + x 1 2 .
  • Wiedząc dodatkowo, że x1 − x2 = 4 , oblicz m . Dla wyznaczonej liczby m naszkicuj wykres funkcji f w układzie współrzędnych, a następnie rozwiąż równanie f(x − 3) = −6 .
    PIC

Funkcja kwadratowa f ma następujące własności:
– zbiorem wartości funkcji f jest przedział (− ∞ ,8⟩ ;
– funkcja f jest rosnąca w przedziale (− ∞ ,3⟩ i malejąca w przedziale ⟨3,+ ∞ ) ;
– wykres funkcji f przecina oś Oy w punkcie, którego rzędna jest równa (− 10) .
Wyznacz wzór funkcji f w postaci iloczynowej.

Dla jakich wartości parametru m funkcja

 { f(x) = (m − 1 )x+ m dla x < 1 x2 + (m − 2 )x+ 4− 2m dla x ≥ 1

przyjmuje tylko dodatnie wartości?

Ukryj Podobne zadania

Wiedząc, że α jest kątem ostrym oraz  √ -- tg α = 4 3 oblicz wartość wyrażenia √ - --3+sinα 1+cosα .

Ukryj Podobne zadania

Wiedząc, że α jest kątem ostrym i tgα = 3 , oblicz wartość wyrażenia  3 -sin2α cos α .

Kąt α jest kątem ostrym i  √5- tg α = 2 . Oblicz  2 3− 2 sin α .

Wiedząc, że α jest kątem ostrym i tgα = 2 , oblicz wartość wyrażenia csoinsα2α .

Ukryj Podobne zadania

Kąt α jest ostry i  √-5 sin α + cos α = 2 . Oblicz wartość wyrażenia  -1- tg α + tgα .

Strona 16 z 20
spinner