Zadania.info Największy internetowy zbiór zadań z matematyki

/Szkoła średnia/Geometria/Stereometria/Ostrosłup

Wyszukiwanie zadań

W ostrosłupie prawidłowym trójkątnym krawędź boczna jest 2 razy dłuższa od krawędzi podstawy. Oblicz cosinus kąta utworzonego przez dwie sąsiednie ściany boczne.

Ukryj Podobne zadania

W ostrosłupie prawidłowym trójkątnym krawędź boczna jest 3 razy dłuższa od krawędzi podstawy. Oblicz cosinus kąta utworzonego przez dwie sąsiednie ściany boczne.

Podstawą ostrosłupa ABCD jest trójkąt ABC , a krawędź AD jest wysokością ostrosłupa. Oblicz pole powierzchni całkowitej ostrosłupa ABCD , jeśli wiadomo, że jego objętość jest równa 48 oraz |BC | = 6,|BD | = |CD | = 13 . Podaj wszystkie możliwe odpowiedzi.

Krawędź boczna ostrosłupa prawidłowego trójkątnego ma długość b i tworzy z płaszczyzną podstawy kąt o mierze α . Jaką objętość ma ten ostrosłup?

W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość  √ -- 2 3 . Oblicz objętość tego ostrosłupa jeżeli kąt nachylenia krawędzi bocznej do podstawy ma miarę 60∘ .

Ukryj Podobne zadania

W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość 6. Oblicz objętość tego ostrosłupa jeżeli kąt nachylenia krawędzi bocznej do podstawy ma miarę 60∘ .

W ostrosłupie prawidłowym trójkątnym ABCS o podstawie ABC wysokość jest równa 3, a kąt między sąsiednimi ścianami bocznymi ostrosłupa ma miarę 12 0∘ . Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa ABCS jest trójkąt równoramienny ABC . Krawędź AS jest wysokością ostrosłupa oraz  √ ---- |AS | = 8 210, |BS | = 118 , |CS | = 131 . Oblicz objętość tego ostrosłupa.

Podstawą ostrosłupa prawidłowego jest kwadrat. Wysokość ściany bocznej tego ostrosłupa jest równa 22, a tangens kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy jest równy  √ - 4--6 5 . Oblicz objętość tego ostrosłupa.


PIC


Narożnik między dwiema ścianami i sufitem prostopadłościennego pokoju należy zamaskować trójkątnym fragmentem płyty gipsowo-kartonowej (patrz rysunek). Wiedząc, że RA = RB = RC = 1 m, oblicz objętość narożnika zamaskowanego tą płytą. Wynik zaokrąglij do 0,01 m 3 .


PIC


W ostrosłupie, którego podstawą jest trójkąt równoboczny o boku a , jedna z krawędzi bocznych jest prostopadła do podstawy. Dwie pozostałe krawędzie tworzą z podstawą kąty o mierze α . Znajdź pole największej ściany bocznej oraz tangens kąta nachylenia tej ściany do płaszczyzny podstawy.

Dany jest sześcian ABCDEF GH o krawędzi długości 9. Wierzchołki podstawy ABCD sześcianu połączono odcinkami z punktem W , który jest punktem przecięcia przekątnych podstawy EF GH . Otrzymano w ten sposób ostrosłup prawidłowy czworokątny ABCDW .


PIC


Oblicz cosinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.

Ukryj Podobne zadania

Dany jest graniastosłup prawidłowy czworokątny ABCDEF GH o krawędzi podstawy równej 9 i wysokości równej 12. Wierzchołki podstawy ABCD graniastosłupa połączono odcinkami z punktem W , który jest punktem przecięcia przekątnych podstawy EF GH . Otrzymano w ten sposób ostrosłup prawidłowy czworokątny ABCDW .


PIC


Oblicz cosinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD . Ramię trójkąta równoramiennego ASC ma długość 8 i jest dwa razy dłuższe od jego podstawy. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy.


PIC


Objętość ostrosłupa prawidłowego czworokątnego jest równa  3 4 00 cm , a jego wysokość jest równa 12 cm. Oblicz pole powierzchni bocznej tego ostrosłupa. Zapisz obliczenia.

Krawędź boczna ostrosłupa prawidłowego trójkątnego jest dwa razy dłuższa od krawędzi podstawy. Krawędź podstawy jest równa a . Oblicz pole powierzchni bocznej i sinus połowy kąta między ścianami bocznymi ostrosłupa.

Krawędź boczna ostrosłupa prawidłowego czworokątnego jest dwa razy dłuższa od krawędzi podstawy. Oblicz cosinus kąta między sąsiednimi ścianami bocznymi.

Ukryj Podobne zadania

W ostrosłupie prawidłowym czworokątnym pole podstawy jest dwa razy większe od pola ściany bocznej. Oblicz cosinus kąta między sąsiednimi ścianami bocznymi tego ostrosłupa.

Dany jest ostrosłup prawidłowy czworokątny o objętości  3 4 8 cm . Ściana boczna jest nachylona do podstawy pod takim kątem α , że tg α = 43 . Wyznacz pole powierzchni bocznej tego ostrosłupa.

Krawędź boczna ostrosłupa prawidłowego czworokątnego wpisanego w kulę o promieniu R tworzy z płaszczyzną podstawy kąt α . Oblicz pole powierzchni całkowitej tego ostrosłupa.

Podstawą ostrosłupa ABCD jest trójkąt równoboczny ABC o boku długości √ -- 2 . Wszystkie ściany boczne są równoramiennymi trójkątami prostokątnymi. Punkt P został wybrany wewnątrz ostrosłupa w ten sposób, że wysokości ostrosłupów ABDP , BCDP , ACDP , ABCP opuszczone z wierzchołka P mają tę samą długość H . Sporządź rysunek ostrosłupa i oblicz H .

Dany jest ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość a i krawędź boczna jest od niej dwa razy dłuższa. Oblicz cosinus kąta między krawędzią boczną i krawędzią podstawy ostrosłupa. Narysuj przekrój ostrosłupa płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej i oblicz pole tego przekroju.


PIC


Podstawą ostrosłupa ABCDS jest czworokąt ABCD . Przekątna AC tego czworokąta ma długość  √ -- 10 3 , a kąt ADC ma miarę 1 20∘ . Każda krawędź boczna tego ostrosłupa ma tę samą długość 26. Oblicz odległość środka wysokości tego ostrosłupa od krawędzi AS .

Ukryj Podobne zadania

Podstawą ostrosłupa ABCDS jest czworokąt ABCD . Przekątna AC tego czworokąta ma długość  √ -- 5 2 , a kąt ADC ma miarę 13 5∘ . Każda krawędź boczna tego ostrosłupa ma tę samą długość 13. Oblicz sumę odległości spodka wysokości ostrosłupa od krawędzi bocznych AS , BS , CS i DS .

Dany jest ostrosłup prawidłowy czworokątny, w którym wszystkie krawędzie mają równą długość. Zaznacz na rysunku kąt utworzony przez dwie sąsiednie ściany boczne tego ostrosłupa i oblicz cosinus tego kąta.


PIC


Strona 7 z 11
spinner