Zestaw użytkownika nr 1278_7927

WielomianySuma punktów: 125

Zadanie 1
(5 pkt)

Reszta z dzielenia wielomianu  3 2 x + px − x + q przez trójmian  2 (x + 2) wynosi 1 − x . Wyznacz pierwiastki tego wielomianu.

Zadanie 2
(5 pkt)

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1) , (x+ 2) , (x − 3) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = (x − 1 )(x+ 2)(x− 3) .

Zadanie 3
(5 pkt)

Reszta z dzielenia wielomianu W (x) przez wielomian  3 2 P (x) = x + 2x − x − 2 jest równa x2 + x + 1 . Wyznacz resztę z dzielenia wielomianu W (x ) przez wielomian V(x ) = x2 − 1 .

Zadanie 4
(5 pkt)

Dane są wielomiany  3 2 W (x) = 2x − 3x − 8x − 3 i  2 P(x) = (x + 1 )(ax + bx + c) .

  • Wyznacz współczynniki a,b,c tak, aby W (x) = P (x) .
  • Przedstaw wielomian W (x) jako iloczyn wielomianów liniowych.
Zadanie 5
(5 pkt)

Dany jest wielomian  3 2 W (x) = − 2x + kx + 4x − 8 .

  • Wyznacz wartość k tak, aby reszta z dzielenia wielomianu W przez dwumian x + 1 była równa -6.
  • Dla znalezionej wartości k rozłóż wielomian na czynniki liniowe.
  • Dla znalezionej wartości k rozwiąż nierówność W (x + 1) ≤ − 3x 3 + 5x − 2 .
Zadanie 6
(5 pkt)

Wyznacz współczynniki a,b wielomianu  3 2 W (x) = x + ax + bx+ 1 wiedząc, że dla każdego x ∈ R prawdziwa jest równość: W (x − 1) − W (x ) = − 3x2 + 3x − 6 .

Zadanie 7
(5 pkt)

Wielomian W jest wielomianem stopnia 5 i spełnia warunki: W (3) = 1 oraz W (−3 ) = 2 . Wykaż, że nie wszystkie współczynniki wielomianu W są liczbami całkowitymi.

Zadanie 8
(5 pkt)

Wielomian W dany jest wzorem  3 2 W (x) = x + ax − 4x + b .

  • Wyznacz a,b oraz c tak, aby wielomian W był równy wielomianowi P , gdy P (x) = x3 + (2a + 3)x 2 + (a + b + c)x − 1 .
  • Dla a = 3 i b = 0 zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.
Zadanie 9
(5 pkt)

Dla jakich wartości parametru α , wielomian  3 2 W (x ) = x − (2sin 4α)x + 3x − sin 4α− 5 jest podzielny przez dwumian (x− 2) ?

Zadanie 10
(5 pkt)

Rozłóż wielomian  4 2 W (x ) = x − 7x + 12 na czynniki liniowe. Podaj niewymierne pierwiastki tego wielomianu.

Zadanie 11
(5 pkt)

Rozłóż wielomian  3 2 W (x ) = x + 3x − 2x − 6 na czynniki liniowe.

Zadanie 12
(5 pkt)

Dla jakich wartości parametru m reszta z dzielenia wielomianu

 17 15 10 2 x − mx + (m − 2)x + 2x+ m − 2

przez dwumian x − 1 jest równa 3?

Zadanie 13
(5 pkt)

Wielomian W (x) przy dzieleniu przez dwumiany (x − 2) , (x+ 4) daje reszty odpowiednio równe -3 oraz -51. Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian P(x ) = x3 + 3x2 − 6x − 8 , wiedząc, że liczba -1 jest miejscem zerowym wielomianu W (x ) .

Zadanie 14
(5 pkt)

Wielomian  4 3 2 x − (a− b)x + (a+ b)x − 3x jest podzielny przez wielomian x 3 − 4x 2 + 3x . Oblicz a i b .

Zadanie 15
(5 pkt)

Przy dzieleniu wielomianu W (x ) przez dwumian (x − 1) otrzymujemy iloraz Q (x) = 8x2 + 4x − 14 oraz resztę R (x) = − 5 . Oblicz pierwiastki wielomianu W (x) .

Zadanie 16
(5 pkt)

Wyznacz te argumenty, dla których funkcja  6 3 f(x) = x + 6x − 5 osiąga wartość najmniejszą.

Zadanie 17
(5 pkt)

Reszta z dzielenia wielomianu  3 m m −1 W (x) = 4x + (1 − 2 )x − 4 + 3 przez dwumian (x+ 1) jest równa -2.

  • Wyznacz wartość parametru m .
  • Dla wyznaczonej wartości parametru m rozwiąż nierówność W (x) ≥ 0 .
Zadanie 18
(5 pkt)

Wielomian  4 3 2 W (x) = x + 3x + ax + bx + c jest podzielny przez trójmian x 2 + 3x − 1 0 , a przy dzieleniu przez dwumian (x+ 1) daje resztę -36. Wyznacz współczynniki a,b i c wielomianu.

Zadanie 19
(5 pkt)

Korzystając z definicji funkcji rożnowartościowej wykaż, że funkcja f określona wzorem f(x) = x 3 + 2x − 3 jest rożnowartościowa.

Zadanie 20
(5 pkt)

Wyznacz zbiór wartości funkcji  3 f (x) = W (x )− x , gdzie  3 2 W (x ) = x + 5x + 5x − 3 .

Zadanie 21
(5 pkt)

Wiedząc, że wielomian  3 2 W (x ) = x + ax + bx + 1 jest podzielny przez wielomian (x− 1)2 , oblicz a i b .

Zadanie 22
(5 pkt)

Reszta z dzielenia wielomianu W (x) przez wielomian  4 3 2 P (x) = x + x − 3x − 4x − 4 jest wielomianem R(x) = x3 − 5x + 1 . Wyznacz resztę z dzielenia tego wielomianu przez wielomian F (x) = x 2 − 4 .

Zadanie 23
(5 pkt)

Dany jest wielomian  3 2 W (x) = x + cx + 7x + d .

  • Wyznacz wartości współczynników c i d wielomianu W , wiedząc, że jest podzielny przez dwumian (x+ 2) , zaś przy dzieleniu przez dwumian (x − 1) otrzymujemy resztę 3.
  • Dla c = − 5 i d = −3 rozwiąż nierówność W (x) ≤ 0 .
Zadanie 24
(5 pkt)

Dla jakich wartości parametru a reszta z dzielenia wielomianu W (x) = 2x4 − 3x3 + ax 2 + a2x + 2 przez dwumian (x − 1) jest większa od 3.

Zadanie 25
(5 pkt)

Wyznacz wartości a i b współczynników wielomianu  3 2 W (x) = x + ax + bx + 1 wiedząc, że W (2) = 7 oraz, że reszta z dzielenia W (x) przez (x − 3) jest równa 10.

Arkusz Wersja PDF
spinner