Zestaw użytkownika nr 1641_3798

Zestaw użytkownika
nr 1641_3798

Zadanie 1

Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 2, a krawędź boczna długość 6.

Zadanie 2

Podstawą graniastosłupa jest trójkąt prostokątny równoramienny o ramieniu długości 9. Kąt między przekątną największej ściany bocznej i wysokością graniastosłupa jest równy 60∘ . Oblicz pole powierzchni bocznej i objętość tego graniastosłupa.

Zadanie 3

W kulę o promieniu długości R wpisano walec o największej objętości. Wyznacz stosunek objętości kuli do objętości tego walca.

Zadanie 4

Podstawą ostrosłupa ABCDS jest kwadrat ABCD (patrz rysunek).


PIC


Krawędź AS jest wysokością tego ostrosłupa. Odległość punktu B od krawędzi CS jest równa d , a kąt dwuścienny między ścianami BCS i CDS ma miarę 2 α , gdzie α ∈ ( π, π-) 4 2 . Oblicz:

  • odległość punktu A od krawędzi CS
  • wysokość tego ostrosłupa.
Zadanie 5

Podstawą graniastosłupa prostego jest trójkąt równoramienny o ramionach długości a . Pole podstawy jest równe sumie pól dwóch przystających ścian bocznych graniastosłupa. Jakie powinny być długości pozostałych krawędzi graniastosłupa, aby jego objętość była największa?

Zadanie 6

Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest półkolem. Oblicz miarę kąta rozwarcia stożka.

Zadanie 7

W ostrosłupie trójkątnym wszystkie krawędzie boczne i dwie krawędzie podstawy mają długość b , a kąt nachylenia krawędzi bocznej, przechodzącej przez wierzchołek wspólny równych krawędzi podstawy, do płaszczyzny podstawy ma miarę α . Oblicz objętość tego ostrosłupa.

Zadanie 8

Liczba wszystkich przekątnych podstaw i ścian bocznych pewnego graniastosłupa jest równa 110. Oblicz, ile krawędzi ma podstawa tego graniastosłupa.

Zadanie 9

Oblicz objętość ostrosłupa prawidłowego czworokątnego jeśli jego krawędź boczna o długości 6 nachylona jest do płaszczyzny podstawy pod kątem 60 ∘ .

Zadanie 10

Przekrój stożka wyznaczony przez wierzchołek i cięciwę podstawy jest trójkątem równobocznym, o polu równym  √ -- 36 3 . Płaszczyzna r , do której należy ten przekrój, tworzy z płaszczyzną podstawy stożka kąt o mierze równej 60 ∘ . Oblicz objętość stożka.

Zadanie 11

W kulę o promieniu R wpisano stożek. Ze środka tej kuli widać tworzącą stożka pod kątem α . Oblicz objętość stożka.

Zadanie 12

Krawędź boczna ostrosłupa prawidłowego trójkątnego ma długość b i tworzy z krawędzią podstawy kąt o mierze α . Jaką objętość ma ten ostrosłup?

Zadanie 13

W sferę o promieniu R wpisano ostrosłup prawidłowy trójkątny w ten sposób, że wszystkie wierzchołki ostrosłupa leżą na powierzchni sfery. Wiedząc, że krawędź boczna ostrosłupa ma długość 13, a krawędź podstawy długość 5√ 3- , oblicz R .

Arkusz Wersja PDF
spinner