Zestaw użytkownika nr 2033_5046

Zestaw użytkownika
nr 2033_5046

Zadanie 1

Reszta z dzielenia wielomianu  3 2 x + px − x + q przez trójmian  2 (x + 2) wynosi 1 − x . Wyznacz pierwiastki tego wielomianu.

Zadanie 2

Wielomian W (x) przy dzieleniu przez dwumiany (x − 1) , (x+ 2) , (x − 3) daje reszty odpowiednio równe 5, 2, 27. Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = (x − 1 )(x+ 2)(x− 3) .

Zadanie 3

Reszta z dzielenia wielomianu W (x) przez wielomian  3 2 P (x) = x + 2x − x − 2 jest równa x2 + x + 1 . Wyznacz resztę z dzielenia wielomianu W (x ) przez wielomian V(x ) = x2 − 1 .

Zadanie 4

Liczba 2 jest miejscem zerowym wielomianu W (x) . Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 2 − 3x + 2 jeśli wiadomo, że w wyniku dzielenia wielomianu W (x ) przez dwumian (x − 1) otrzymujemy resztę 5.

Zadanie 5

Reszta z dzielenia wielomianu W (x) przez dwumian x − 1 jest równa 1, zaś reszta z dzielenia tego wielomianu przez x − 2 jest równa 4. Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian x 2 − 3x + 2 .

Zadanie 6

Dany jest wielomian  3 2 W (x) = x + x − 5x + 3 .

  • Oblicz resztę z dzielenia tego wielomianu przez dwumian (x + 1) .
  • Oblicz miejsca zerowe tego wielomianu.
  • Rozwiąż nierówność W (x) > (x − 1)2 .
Zadanie 7

Dane są wielomiany  3 2 W (x) = 2x − 3x − 8x − 3 i  2 P(x) = (x + 1 )(ax + bx + c) .

  • Wyznacz współczynniki a,b,c tak, aby W (x) = P (x) .
  • Przedstaw wielomian W (x) jako iloczyn wielomianów liniowych.
Zadanie 8

Dany jest wielomian  3 2 W (x) = − 2x + kx + 4x − 8 .

  • Wyznacz wartość k tak, aby reszta z dzielenia wielomianu W przez dwumian x + 1 była równa -6.
  • Dla znalezionej wartości k rozłóż wielomian na czynniki liniowe.
  • Dla znalezionej wartości k rozwiąż nierówność W (x + 1) ≤ − 3x 3 + 5x − 2 .
Zadanie 9

Wyznacz współczynniki a,b wielomianu  3 2 W (x) = x + ax + bx+ 1 wiedząc, że dla każdego x ∈ R prawdziwa jest równość: W (x − 1) − W (x ) = − 3x2 + 3x − 6 .

Zadanie 10

Dla jakich wartości parametru k reszta z dzielenia wielomianu W (x) = x5 + (k3 + 3k2)x3 − 2(k2 + 2k)x − k przez dwumian x− 1 jest nie większa od (–2)?

Zadanie 11

Wielomian W dany jest wzorem  3 2 W (x) = x + ax − 4x + b .

  • Wyznacz a,b oraz c tak, aby wielomian W był równy wielomianowi P , gdy P (x) = x3 + (2a + 3)x 2 + (a + b + c)x − 1 .
  • Dla a = 3 i b = 0 zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.
Zadanie 12

Wyznacz zbiór wartości funkcji  2 2 2 f(x) = (x − 2x − 2) + 4 (x − 2x− 2)− 1 .

Zadanie 13

Rozłóż na czynniki drugiego stopnia wielomian  4 x + 1 .

Zadanie 14

Rozłóż wielomian  4 2 W (x ) = x − 7x + 12 na czynniki liniowe. Podaj niewymierne pierwiastki tego wielomianu.

Zadanie 15

Dla jakich wartości parametru m reszta z dzielenia wielomianu

 17 15 10 2 x − mx + (m − 2)x + 2x+ m − 2

przez dwumian x − 1 jest równa 3?

Zadanie 16

Wyznacz zbiór wartości funkcji  3 f (x) = W (x )− x , gdzie  3 2 W (x ) = x + 5x + 5x − 3 .

Zadanie 17

Dany jest wielomian  3 2 W (x) = x + cx + 7x + d .

  • Wyznacz wartości współczynników c i d wielomianu W , wiedząc, że jest podzielny przez dwumian (x+ 2) , zaś przy dzieleniu przez dwumian (x − 1) otrzymujemy resztę 3.
  • Dla c = − 5 i d = −3 rozwiąż nierówność W (x) ≤ 0 .
Arkusz Wersja PDF
spinner