Zestaw użytkownika nr 2080_5075

MATURA 2011Sprawdzian maturalny4 Marca 2011Czas pracy: 60 min.Suma punktów: 25

Zadanie 1
(5 pkt)

Rozwiąż nierówność x4+-2x3+x-2 x− 1+ 6x2 < 0 .

Zadanie 2
(5 pkt)

Wyznacz współrzędne wierzchołków trójkąta jeżeli środki jego boków mają współrzędne: P = (1,3),Q = (− 5,4),R = (− 6,7) .

Zadanie 3
(5 pkt)

Określ liczbę pierwiastków równania  2 (m + 1 )x + (m + 1)x + 1 = 0 w zależności od wartości parametru m , a następnie naszkicuj wykres funkcji:

 ( |{ x1 + x2 gdy dane równanie ma dwa pierwiastki x1 i x2, f(m ) = |( 2x0 gdy dane równanie ma jeden pierwiastek x 0, 3− m gdy dane równanie nie ma pierwiastków .
Zadanie 4
(5 pkt)

Na rysunku przedstawiony jest wykres funkcji f określonej wzorem f (x) = 3x dla x ⁄= 0 .


PIC


Wykres ten przesunięto o 2 jednostki w górę wzdłuż osi Oy . Otrzymano w ten sposób wykres funkcji g o wzorze g(x) = 3x + 2 dla x ⁄= 0 .

  • Narysuj wykres funkcji g .
  • Oblicz największą wartość funkcji g w przedziale ⟨21,31⟩ .
  • Podaj, o ile jednostek wzdłuż osi Ox należy przesunąć wykres funkcji g , aby otrzymać wykres funkcji przechodzący przez początek układu współrzędnych.
Zadanie 5
(5 pkt)

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (− 2,− 4) oraz B = (− 5,2) . Jedno z jego ramion zawiera się w prostej o równaniu y = x − 2 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

Rozwiąż on-line Arkusz Wersja PDF
spinner