Zestaw użytkownika nr 2158_3826

Zestaw użytkownika
nr 2158_3826

Zadanie 1

Wyznacz najmniejszą i największą wartość funkcji  2 f(x) = −x − 4x− 2 w przedziale ⟨− 2;2 ⟩ .

Zadanie 2

Wyznacz wszystkie całkowite wartości k , dla których funkcja  2 f (x) = k-−k−k−42-x2 − (k− 2 )x+ k− 4 osiąga minimum i ma dwa różne miejsca zerowe.

Zadanie 3

Jednym z miejsc zerowych funkcji kwadratowej f jest liczba 5, maksymalny przedział, w którym ta funkcja jest malejąca to ⟨2 ,+∞ ) . Największa wartość funkcji f w przedziale ⟨− 8,− 7⟩ jest równa (− 24) . Wyznacz wzór funkcji f i narysuj jej wykres.

Zadanie 4

Pierwiastkami trójmianu kwadratowego f o współczynniku -3 przy najwyższej potędze są liczby x1 = − 6,x2 = 4 . Oblicz f(− 10 ) .

Zadanie 5

Dla każdej liczby rzeczywistej b równanie  1 2 y = 2x − bx + 2 opisuje pewną parabolę. Wyznacz wszystkie wartości parametru b , dla których wierzchołek paraboli leży nad osią Ox .

Zadanie 6

Dany jest wykres funkcji kwadratowej y = f(x )


PIC


  • Korzystając z danych na wykresie wyznacz wzór funkcji f w postaci ogólnej.
  • Oblicz współrzędne wierzchołka paraboli.
  • Podaj zbiór rozwiązań nierówności f(x − 7) < f(− 5) .
Zadanie 7
  • Suma kwadratów trzech kolejnych ujemnych liczb całkowitych parzystych jest równa 116. Wyznacz te liczby.
  • Wyznacz takie trzy kolejne liczby całkowite parzyste, których suma kwadratów jest najmniejsza z możliwych.
Arkusz Wersja PDF
spinner