Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR

Funkcje trygonometryczne - dowody

Definicje


PIC


Definicja
Niech P = (x,y) będzie takim punktem na okręgu jednostkowym x 2 + y2 = 1 , że półproste Ox i OP tworzą kąt skierowany o mierze α ∈ R . Definiujemy wtedy

sin α = y cosα = x y x tg α = -- ctgα = -. x y

Zdefiniowane wyżej funkcje nazywamy funkcjami trygonometrycznymi.

Fakt 1
Niech P = (x ,y) będzie takim punktem na okręgu x2 + y2 = r2 , że półproste Ox i OP tworzą kąt skierowany o mierze α ∈ R . Wtedy

 y- x- sinα = r cos α = r y x tg α = -- ctgα = --. x y

Dowód Okrąg  2 2 2 x + y = r powstaje z okręgu  2 2 x + y = 1 przez jednokładność o środku w punkcie O i skali r . Wystarczy teraz zauważyć, że stosunki długości odcinków nie zmieniają się przy jednokładności (bo długość każdego odcinka zmienia się jak mnożenie przez r ).

Fakt 2
Jeżeli α jest kątem ostrym w trójkącie prostokątnym, to przy oznaczeniach z rysunku,

 a b sin α = -- cos α = -- c c tg α = a- ctgα = b. b a

PIC

Dowód


PIC


Wystarczy w Fakcie 1 oznaczyć r = c,x = b i y = a .

Proste tożsamości

Twierdzenie3
Dla dowolnego α ∈ R prawdziwa jest równość

sin2 α+ cos2α = 1.

Tożsamość tę nazywamy jedynką trygonometryczną.

Dowód Współrzędne każdego punktu P = (x ,y ) na okręgu jednostkowym spełniają równość (twierdzenie Pitagorasa)

 2 2 x + y = 1.

Jeżeli popatrzymy na definicje funkcji sinus i cosinus, to widać, że jest to dokładnie to, co mieliśmy udowodnić.

Fakt 4
Dla dowolnego α ∈ R mamy

 sin α tg α = ----- o ile cos α ⁄= 0 co sα ctg α = co-sα o ile sinα ⁄= 0, sin α

Dowód Bezpośrednio z definicji mamy

 y sinα tgα = --= ----- xx cocsoαsα ctgα = --= -----. y sinα

Proste równania i nierówności

Twierdzenie 5

sin α = 0 ⇐ ⇒ α = kπ π sin α = 1 ⇐ ⇒ α = --+ 2kπ 2π sin α = − 1 ⇐ ⇒ α = − -- + 2kπ 2 co sα = 0 ⇐ ⇒ α = π-+ kπ 2 co sα = 1 ⇐ ⇒ α = 2k π co sα = − 1 ⇐ ⇒ α = (2k + 1)π tg α = 0 ⇐ ⇒ α = kπ π ctg α = 0 ⇐ ⇒ α = --+ kπ . 2

gdzie k jest dowolną liczba całkowitą.

Dowód W każdej z równoważności patrzymy na okrąg jednostkowy i sprawdzamy dla jakich kątów α punkt P ma odpowiednie współrzędne.

Np. sin x = 0 dla punktów, które mają drugą współrzędną zerową, czyli są na osi Ox . Punkty te odpowiadają kątom α = kπ, k ∈ C .

Podobnie uzasadniamy pozostałe równoważności.

Twierdzenie 6

sin x > 0 ⇐ ⇒ x ∈ (0 + 2kπ ,π + 2k π) ( ) co sx > 0 ⇐ ⇒ x ∈ − π-+ 2kπ, π-+ 2k π 2 2 ( ) ( π ) 3π tg x > 0 ⇐ ⇒ x ∈ 0+ 2kπ ,2-+ 2k π ∪ π + 2k π, 2--+ 2k π ( ) ( ) π- 3π- ctg x > 0 ⇐ ⇒ x ∈ 0+ 2kπ ,2 + 2k π ∪ π + 2k π, 2 + 2k π .

Dowód Jak zwykle patrzymy na obrazek z definicji funkcji trygonometrycznych i sprawdzamy kolejno: kiedy druga współrzędna punktu P jest dodatnia, kiedy pierwsza współrzędna jest dodatnia, oraz kiedy współrzędne mają ten sam znak.

Okresowość

Twierdzenie 7
Funkcje sinus i cosinus są okresowe. Okresem podstawowym tych funkcji jest liczba 2π .

Dowód To, że liczba 2π jest okresem jest oczywiste: kąty różniące się o wielokrotność 2π odpowiadają temu samemu punktowi P na okręgu jednostkowym.

Pozostało do wykazania, że jest to okres podstawowy, czyli że żadna mniejsza liczba nie jest okresem tych funkcji.

Przypuśćmy, że 0 < T < 2π jest okresem funkcji sin x , czyli dla dowolnego α ∈ R mamy

sin(α + T) = sin α.

Podstawiając w tej równości α = 0 mamy sin T = 0 . Na mocy przyjętego założenia 0 < T < 2 π i Twierdzenia 5, mamy zatem T = π . To jednak nie jest możliwe, bo

 ( π- ) π- sin 2 + π = − 1 ⁄= sin 2 = 1.

Podobnie postępujemy w przypadku funkcji cosinus. W równości

cos(α+ T) = cosα

podstawiamy α = 0 , co daje nam cos T = 1 . Jest sprzeczne z Twierdzeniem 5 (bo 0 < T < 2π ).

Twierdzenie 8
Funkcje tangens i cotangens są okresowe. Okresem podstawowym tych funkcji jest liczba π .

Dowód Jest jasne, że liczba 2π jest okresem. To, że liczba π też jest okresem można zobaczyć następująco. Patrzymy na obrazek z definicji funkcji trygonometrycznych.


PIC


Dodanie kąta π do kąta α odpowiada obróceniu półprostej OP o 180 ∘ . Można też myśleć, że jest to odbicie punktu P względem środka O początku układu współrzędnych. W wyniku takiej operacji współrzędne punktu P zmienią znak na przeciwny. To jednak oznacza, że funkcje tangens i cotangens nie zmienią wartości.

Pozostało do wykazania, że jest to okres podstawowy. Załóżmy, że 0 < T < π jest okresem funkcji tangens, czyli dla dowolnego α ∈ R , α ⁄= π-+ kπ 2 mamy

tg(α + T) = tg α.

Wstawiając α = 0 mamy tg T = 0 . To jednak jest niemożliwe na mocy naszego założenia 0 < T < π i Twierdzenia 5.

Podobnie uzasadniamy, że liczba π jest okresem podstawowym funkcji cotangens.

Twierdzenie 9

sin α = sin β ⇐ ⇒ β = α+ 2kπ ∨ β = π − α+ 2kπ cosα = cosβ ⇐ ⇒ β = α+ 2kπ ∨ β = − α + 2kπ tg α = tg β ⇐ ⇒ β = α+ kπ ctg α = ctg β ⇐ ⇒ β = α+ kπ,

gdzie k oznacza dowolną liczbę całkowita.

Dowód Jeżeli sin α = sin β , to odpowiadające tym kątom punkty na okręgu jednostkowym mają taką samą drugą współrzędną. Jeżeli te punkty się pokrywają, to mamy β = α + 2k π . Jeżeli natomiast są dwa różne punkty, to muszą leżeć symetrycznie względem osi Oy . To jednak oznacza, że β = π − α + 2k π .

Podobnie uzasadniamy drugą równoważność.

Patrząc na definicje funkcji trygonometrycznych łatwo zauważyć, że tangens jest rosnący w przedziałach (− π2-+ 2kπ , π2-+ 2k π) i (π2 + 2kπ , 32π-+ 2kπ ) . Zatem na okręgu jednostkowym są co najwyżej dwa punkty, dla których tangensy odpowiadających kątów są równe tg α . Z drugiej strony, z okresowości tangensa wiemy, że tg(α + π ) = tg α . Zatem równość tg α = tg β oznacza, że α = β+ 2kπ (jeżeli odpowiadające punkty się pokrywają) lub β = π + α + 2kπ (jeżeli punkty są różne). Oba warunki można krótko zapisać w postaci β = α + k π .

Podobnie rozumujemy w przypadku cotangensa (lub korzystamy ze wzoru  1 ctg α = tg-α ).

Wzory redukcyjne

Twierdzenie 10
Niech zapis funkcja oznacza jedną funkcji trygonometrycznych, a zapis kof unkcja , niech będzie odpowiadającą kofunkcją do funkcji , według schematu

sin ↔ co s tg ↔ ctg .

Wtedy dla dowolnego k ∈ C mamy zależność

 { ( π- ) 𝜀⋅funkcja (α) jeżeli k jest parzyste funkcja k⋅ 2 ± α = 𝜀⋅kof unkcja(α) jeżeli k jest nieparzyste ,

gdzie 𝜀 jest znakiem wyrażenia  ( ) funkcja k ⋅ π-± α 2 po podstawieniu za α dowolnego kąta ostrego.

Dowód Patrząc ponownie na koło jednostkowe, łatwo zauważyć, że następujące operacje: dodanie lub odjęcie kąta π do α , zamiana α na − α , nie zmieniają wartości bezwzględnych współrzędnych punktu P (czyli co najwyżej zmieniają znaki współrzędnych tego punktu).


PIC


To oznacza, że dodawanie/odejmowanie dowolnej wielokrotności kąta π do argumentu którejkolwiek funkcji trygonometrycznej nie zmienia wartości bezwzględnej tej funkcji (czyli co najwyżej zmienia jej znak). Podobnie w przypadku zamiany kąta na kąt przeciwny. W szczególności uzasadniliśmy równość

 ( π ) funkcja k ⋅-2 ± α = ±f unkcja (α) jeżeli k jest parzyste

Podobnie, łatwo sprawdzić na okręgu jednostkowym, że dodatnie/odjęcie do kąta α kąta π2- , powoduje zamianę wartości bezwzględnych współrzędnych punktu P (czyli współrzędne te zamieniają się miejscami i ewentualnie zmieniają znaki). W połączeniu z uzasadnioną już niezmienniczością na dodawanie/odejmowanie wielokrotności kąta π , oraz na zmianę kąta na przeciwny, daje nam to

 ( π ) funkcja k⋅-- ± α = ±kof unkcja (α) jeżeli k jest nieparzyste . 2

Pozostało ustalić jaki powinien być znak z prawej strony tych wzorów. Aby to zrobić, wystarczy sprawdzić jakie są znaki obu stron dla jednego dowolnie wybranego kąta. Jeżeli wybierzemy kąt ostry α , to zarówno funkcja (α) jak i kof unkcja(α) są dodatnie i za 𝜀 trzeba wziąć znak wyrażenia  ( π- ) f unkcja k⋅ 2 ± α

Funkcje sumy i różnicy kątów

Twierdzenie 11
Dla dowolnych α ,β ∈ R prawdziwe są wzory

sin (α+ β) = sinα cos β + sinβ cos α cos(α + β) = co sα cosβ − sin αsin β.

Dowód W dowodzie użyjemy rachunku wektorowego. Zacznijmy od narysowania w układzie współrzędnych wektora jednostkowego  → OP o początku w punkcie O i tworzącego z osią Ox kąt α .


PIC


Wtedy P = (cosα,sin α) . Niech  → OP ′ będzie wektorem, który powstaje z  → OP przez obrót względem punktu O o kąt β . Oczywiście

 ′ P = (co s(α+ β),sin(α + β)).

Spróbujemy teraz wyliczyć współrzędne punktu P′ w inny sposób.

Niech Ox ′y′ będzie układem współrzędnych, który powstaje z Oxy przez obrót względem punktu O o kąt α . W szczególności oś Ox ′ jest wyznaczona przez wektor  → OP = [cosα,sin α] . W takim razie druga oś jest wyznaczona przez wektor → OR , który jest prostopadły do  → OP . Łatwo odgadnąć współrzędne tego wektora:  → OR = [− sin α,co sα] (prawy obrazek).

W układzie współrzędnych Ox ′y′ wektor  → OP ′ ma współrzędne [cos β,sinβ ] (bo tworzy kąt β z osią Ox ′ ), co nam daje następujące współrzędne w układzie Oxy .

 → → → OP ′ = cos β⋅OP + sin β ⋅OR = co sβ ⋅[cosα ,sin α]+ sin β ⋅[− sinα ,cosα] = = [cosβ cos α− sin β sin α,co sβ sin α + sinβ cos α].

W połączeniu z wcześniej zauważoną równością

 → OP ′ = [cos(α+ β),sin(α + β)]

daje to nam żądane równości.

Twierdzenie 12
Dla dowolnych α ,β ∈ R prawdziwe są wzory

sin (α− β) = sinα cos β − sinβ cos α cos(α − β) = co sα cosβ + sin αsin β.

Dowód Podstawiamy we wzorach z poprzedniego twierdzenia − β zamiast β .

Twierdzenie 13

tg (α + β) = -tgα-+--tg-β- 1 − tg αtg β tgα − tg β tg (α − β) = ------------. 1 + tg αtg β

Dowód Liczymy (korzystając z Twierdzenia 11)

tg(α + β) = sin-(α+--β)-= sinα-cos-β+--sin-β-cosα- = cos(α + β) cos αcos β − sinα sinβ sin-αcosβ+sin-βcosα ----cosαcosβ----- -tg-α+--tg-β- = cosαcosβ−sin-αsinβ- = 1 − tg αtg β. cosαcosβ

Drugi wzór otrzymujemy z pierwszego podstawiając − β zamiast β .

Funkcje podwojonego kąta

Twierdzenie 14

sin2 α = 2 sin α cosα cos 2α = co s2α − sin2α = 2cos2 α− 1 = 1 − 2 sin 2α 2 tg α tg 2α = --------- 1 − tg2 α

Dowód Pierwsze dwa wzory otrzymujemy podstawiając β = α w Twierdzeniu 11 oraz korzystając z jedynki trygonometrycznej. Trzeci wzór otrzymujemy biorąc α = β w Twierdzeniu 13.

Twierdzenie 15
Jeżeli oznaczymy t = tg α2 to

sinα = --2t-- 1 + t2 1 − t2 cos α = -----2 1 + t tgα = --2t--. 1 − t2

Dowód Liczymy (korzystamy z Twierdzenia 14)

 α α 2 sin α cos α sin α = 2 sin --cos --= ---2 α-2----2α-= 2 2 sin 2 + cos2 2 2sin α2 cos α2 cos2 α2 2tg α2 2t = sin2 α+cos2 α-=--2 α----= t2 +-1. ---c2os2 α-2 tg 2 + 1 2

Podobnie liczymy dla cosinusa.

 α α cos2 α − sin2 α cos α = cos2 --− sin2 --= ---22 α--------2α-= 2 2 sin 2 + cos2 2 cos2 α2−-sin2 α2 cos2 α2 1 − tg2 α2 1 − t2 = -sin2 α+cos2 α-=--2-α---- = -2----. ---2cos2 α-2- tg 2 + 1 t + 1 2

Jeszcze wzór dla tangensa.

 -2t- tgα = sin-α = 1+t22-= --2t--. cos α 1−t2 1 − t2 1+t

Sumy i różnice funkcji

Twierdzenie 16

 α + β α − β sin α + sin β = 2 sin ------co s------ 2 2 cosα + cosβ = 2cos α-+-β-cos α-−-β- 2 2 α − β α + β sin α − sin β = 2 sin --2---co s--2--- cosα − cosβ = − 2sin α−--β-sin α-+-β-. 2 2

Dowód Jeżeli w pierwszym wzorze podstawimy − β zamiast β , otrzymamy trzeci wzór. Podobnie, podstawiając π − β w drugim wzorze, otrzymamy czwarty wzór. Wystarczy zatem udowodnić dwa pierwsze wzory.

Liczymy (korzystamy z Twierdzeń 11 i 12)

 ( α+ β α − β ) ( α + β α− β) sin α+ sin β = sin ------+ ------ + sin ------− ------ = 2 2 2 2 α + β α − β α − β α+ β = sin ------cos ------+ sin ------cos -----+ 2 2 2 2 + sin α-+-β-co s α-−-β-− sin α-−-β-co s α-+-β-= 2 2 2 2 α-+-β- α-−-β- = 2 sin 2 cos 2 .

Podobnie jest z drugą równością

 ( α + β α− β) ( α + β α − β ) cosα + cosβ = co s ------+ ------ + cos ------ − ------ = 2 2 2 2 α-+-β- α-−-β- α-−-β- α+--β- = co s 2 co s 2 − sin 2 sin 2 + α+ β α− β α− β α + β + cos ------cos ------+ sin ------sin ------= 2 2 2 2 α-+-β- α-−-β- = 2 cos 2 co s 2 .

Wartości funkcji trygonometrycznych dla wybranych kątów.

Twierdzenie 17

kąt π- 6 π- 4 π- 3
sinus 12 √ - -22 √ - -23
cosinus√- -3- 2 √ - --2 2 1 2

Dowód Zacznijmy od kąta π- 4 . Rysujemy połówkę kwadratu o boku 1.


PIC

Przekątna tego kwadratu ma długość √ -- 2 , więc

 √ -- sin π- = co s π = √1-- = --2-. 4 4 2 2

Aby uzasadnić pozostałe równości rysujemy trójkąt równoboczny o boku 1. Z twierdzenia Pitagorasa łatwo wyliczyć, że wysokość tego trójkąta jest równa √ 3 -2- . Daje to nam

 √ -- sin π-= 1- co s π = --3- 6 2 6 2 π √ 3- π 1 sin --= ---- co s-- = -. 3 2 3 2

Twierdzenie 18

 √ -- ∘ -------√--- π- 1+----5- π- --1-0−-2---5 co s5 = 4 sin 5 = 4

Dowód Korzystamy ze wzorów na sin2 α i cos2α (Twierdzenie 14) oraz ze wzoru sin(π − α) = sinα .

 π- 4π- 2π- 2π- π- π- 2 π sin 5 = sin 5 = 2 sin 5 cos 5 = 4 sin 5 co s 5(2 cos 5 − 1) π- π- π- 2 π π- sin 5 = 4sin 5 cos 5 (2co s 5 − 1) / : sin 5 π π 1 = 4 cos--(2 cos2 --− 1). 5 5

Podstawiamy teraz  π- t = cos 5 .

 2 1 = 4t(2t − 1) 8t3 − 4t − 1 = 0.

Łatwo znaleźć pierwiastek t = − 1 2 tego równania. Dzielmy więc przez 2t + 1 .

 3 3 2 2 2 8t − 4t− 1 = (8t + 4t )− (4t + 2t)− (2t+ 1 ) = (2t+ 1)(4t − 2t − 1).

Wiemy, że cos π- 5 jest dodatni, więc jest to dodatni pierwiastek równania kwadratowego w nawiasie

4t2 − 2t− 1 = 0 Δ = 4 + 16√ =-2 0 √ -- 2 + 2 5 1 + 5 t = --------- = -------- 8 √ -- 4 π- 1+----5- cos 5 = 4 .

Z jedynki trygonometrycznej wyliczamy

 ∘ ----------- ∘ ----------√------ ∘ ------√--- π- 2 π- 1-+-2---5+-5- ---10−--2--5 sin 5 = 1 − cos 5 = 1 − 1 6 = 4 .

Tips & Tricks

1Definicja funkcji trygonometrycznych przy pomocy okręgu jednostkowego jest bardzo wygodna, bo pozwala zdefiniować te funkcje dla dowolnej wartości kąta. Jest ona również historycznie wcześniejsza od definicji używającej trójkąta prostokątnego.

Z drugiej strony, definicja funkcji w trójkącie prostokątnym (Fakt 2) jest o wiele prostsza i lepiej oddaje geometryczny charakter funkcji trygonometrycznych.

2Zaznaczając kąty w układzie współrzędnych zwykle rysowaliśmy ostry kąt α . Warto jednak zadać sobie trud i posprawdzać, że rysując kąty w innych ćwiartkach nasze argumenty pozostają bez zmian.

3Jedynka trygonometryczna (Twierdzenie 3) jest dokładnie zapisem twierdzenia Pitagorasa – szczególnie dobrze to widać patrząc na definicje sinusa i cosinusa w trójkącie prostokątnym.

4Twierdzenie 6 jest zwykle uczone w postaci formułki w pierwszej wszystkie są dodatnie, w drugiej tylko sinus, w trzeciej tangens i cotangens, a w czwartej cosinus.

5Twierdzenie 7 na ogół pojawia się w podręcznikach w postaci liczba 2π jest okresem funkcji.... My wykazujemy jednak znacznie więcej: pokazujemy, że żadna mniejsza liczba nie jest okresem tych funkcji. Podobnie w przypadku Twierdzenia 8.

6Nasz dowód Twierdzenia 9 nie jest w pełni precyzyjny, ale za to bardzo geometryczny. Precyzyjny dowód można przeprowadzić używając wzorów na różnice funkcji trygonometrycznych (Twierdzenie 16).

7Twierdzenie 10 zawiera najogólniejszą postać wzorów redukcyjnych i pomimo swojego pozornego skomplikowania, jest to najlepszy sposób na zapamiętanie wszystkich wzór redukcyjnych na raz.

Wzór ten jest formalnym zapisaniem tego, że obracając się na okręgu co  ∘ 9 0 zamieniamy współrzędne punktu ze sobą i zmieniamy znak jednej z nich. Gdy się to dokładnie napisze wyjdzie Twierdzenie 10.

8Twierdzenie 11 jest zdecydowanie najważniejszym twierdzeniem trygonometrii. Wszystkie tożsamości trygonometryczne są jego konsekwencjami: jedynkę otrzymujemy biorąc α = β w wzorze na cos(α − β) , każdy wzór redukcyjny jest tej postaci, wzory na sumy i różnice funkcji są konsekwencjami tych wzorów – Twierdzenie 16.

9Przedstawiony dowód Twierdzenia 11 jest bardzo elegancki z kilku powodów. Przed wszystkim, nie trzeba w nim nic zakładać o kątach α i β – w większości innych dowodów tego twierdzenia, dowodzi się tych wzorów przy założeniu 0 < α,β < π- 2 , a potem przechodzi się do sytuacji ogólnej ze wzorów redukcyjnych. Przy naszym podejściu, wzory redukcyjne możemy traktować jako wniosek z Twierdzenia 11.

Kolejną zaletą tego dowodu jest to, że otrzymujemy oba wzory (na sinus sumy i cosinus sumy) jednocześnie. Wbrew pozorom, otrzymanie z jednego wzoru z drugiego jest dość podchwytliwe. Jeżeli np. umiemy udowodnić wzór na sinus sumy dla kątów ostrych, to nie ma prostego sposobu na wyprowadzenie stąd wzoru na cosinus sumy. Sztuczki w stylu zamiana α na π 2-+ α wymagają znajomości wzoru na sinus sumy dla kątów większych od π2- , a tego większość innych dowodów nie daje.

10 O dowodzie Twierdzenia 11 należy myśleć następująco. Uzasadniliśmy, że pomiędzy współrzędnymi (x,y) w układzie Oxy , a współrzędnymi  ′ ′ (x ,y ) w układzie  ′ ′ Ox y zachodzi związek

 → → [x,y] = x′ ⋅OP + y′ ⋅OR = [x ′cosα − y′sin α,x′sin α+ y′cosα ].

O wzorze tym należy myśleć jak o wzorze na współrzędne punktu  ′ ′ (x ,y ) po obrocie o kąt α . Jeżeli teraz do tego wzoru wstawimy punkt P = (cosβ,sin β) to trzymamy współrzędne punktu P ′ = (cos(α + β),sin(α + β )) .

11Wzory z Twierdzenia 11 mają bardzo prostą interpretację geometryczną w języku twierdzenia sinusów. Zajmiemy się tylko pierwszym wzorem.

Jeżeli trójkąt o kątach α i β jest wpisany w okrąg o średnicy 1, to z twierdzenia sinusów łatwo zauważyć, że jego boki mają długości sin α,sin β i sin (α+ β) .


PIC


Wtedy wzór na sinus sumy sprowadza się do równości BA = BD + DA , gdzie CD jest wysokością opuszczoną na bok AB .

Po interpretację drugiego wzoru, jak i po inne dowody Twierdzenia 11 odsyłam czytelnika do www.zadania.info/6783108.

12Twierdzenie 15 ma duże znaczenie teoretyczne, bo pokazuje, że wykonując podstawienie z jego treści, można dowolne wyrażenie z funkcjami trygonometrycznymi zamienić na wyrażenie bez funkcji trygonometrycznych (o ile wszystkie funkcje mają tren sam argument!). W praktyce jest to nagminnie stosowane w rachunku całkowym.

13Twierdzenie 18 jest blisko związane z geometrią pięciokąta foremnego i ma prosty dowód geometryczny – www.zadania.info/3024938

14W Twierdzeniach 17 i 18 wypisaliśmy tylko wartości funkcji sinus i cosinus, ale wyliczenie z nich wartości funkcji tangens i cotangens jest już natychmiastowe.

15Wyznaczone wzory na funkcje trygonometryczne kątów π-, π-, π, π 3 4 5 6 są blisko związane z faktem, że trójkąt równoboczny, kwadrat, pięciokąt i sześciokąt foremny można skonstruować przy pomocy cyrkla i linijki. Tymczasem można udowodnić, że nie da się skonstruować siedmiokąta foremnego, co wiąże się tym, że nie ma wzorków na funkcje kąta π7 .

Co ciekawe, można skonstruować 17-kąt foremny, co oznacza, że są wzorki na  π- sin 17 i  -π cos17 . Wzory te jednak są dość skomplikowane:

 ∘ -------------------------------------------------------- √ --(∘ ------√------√---√-------------√---- ) 2𝜀2 − 2 2 34+ 6 17 + 2( 17 − 1)𝜀 − 8 2𝜀 + 𝜀 π sin ---= ----------------------------------------------------------- 17 ∘ ------------------(-∘-----8-----------------------------------)- √ --- √ -- √ --- √ --√ --- - √ -- - 30 + 2 17+ 2 2 3 4+ 6 17+ 2( 17 − 1)𝜀 − 8 2𝜀 + 𝜀 cos π--= ------------------------------------------------------------------, 17 8

gdzie  ∘ -----√----- 𝜀 = 1 7+ 17 i - ∘ -----√---- 𝜀 = 17 − 17 .

Wzorki te znał już Gauss pod koniec XVIII wieku.

Twoje uwagi
Nie rozumiesz fragmentu poradnika?
Zauważyłeś błąd lub literówkę?
Masz pomysł jak ulepszyć poradnik?
Napisz nam o tym!