Zestaw użytkownika nr 2909_6536
Zestaw użytkownika
nr 2909_6536
Podstawą graniastosłupa jest trójkąt prostokątny, w którym przeciwprostokątna ma długość 8 cm, a jeden z kątów ma miarę . Powierzchnia boczna tego graniastosłupa po rozwinięciu na płaszczyznę jest kwadratem. Oblicz pole powierzchni całkowitej i objętość tego graniastosłupa.
W ostrosłupie prawidłowym czworokątnym o krawędzi podstawy 18 cm, kąt między wysokościami przeciwległych ścian bocznych ma miarę . Oblicz pole powierzchni bocznej tego ostrosłupa. Wykonaj odpowiedni rysunek i zaznacz kąt .
Przekątna przekroju osiowego walca ma długość 5 cm i jest nachylona do płaszczyzny podstawy pod kątem . Jaką długość ma promień podstawy tego walca? Jaka jest jego wysokość?
Przez środek jednej krawędzi podstawy sześcianu, koniec przeciwległej krawędzi tej podstawy oraz środek krawędzi bocznej, poprowadzono płaszczyznę. Opisz figurę, którą otrzymamy w wyniku tego przekroju. Rozważ 2 przypadki.
Pole powierzchni całkowitej graniastosłupa prawidłowego sześciokątnego o krawędzi podstawy wyraża się wzorem . Wyznacz sumę długości krawędzi podstawy i wysokości tego graniastosłupa.
W ostrosłupie podstawa jest trójkątem prostokątnym, . Sinus jednego z kątów ostrych podstawy jest równy 0,6 . Promień okręgu opisanego na podstawie ma długość 10cm. Wysokość ostrosłupa ma długość 24cm. Oblicz:
- objętość ostrosłupa;
- tangens kąta nachylenia ściany bocznej ostrosłupa, zawierającej przeciwprostokątną podstawy, do płaszczyzny podstawy.
Objętość graniastosłupa prawidłowego trójkątnego jest równa , a pole powierzchni bocznej tego graniastosłupa jest równe 36. Oblicz sinus kąta, jaki tworzy przekątna ściany bocznej z sąsiednią ścianą boczną.
Do naczynia w kształcie odwróconego stożka wrzucono kulkę o promieniu . Oceń, czy kulka będzie wystawać nad brzeg naczynia. Uzasadnij odpowiedź wykonując odpowiednie obliczenia, jeżeli wiadomo, że wysokość stożka wynosi 12 cm a promień podstawy 4 cm.
Dany jest ostrosłup prawidłowy trójkątny, w którym długość krawędzi podstawy jest równa . Kąt między krawędzią boczną i krawędzią podstawy ma miarę . Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej jej krawędzi bocznej. Sporządź rysunek ostrosłupa i zaznacz otrzymany przekrój. Oblicz pole tego przekroju.
Podstawą ostrosłupa jest trójkąt prostokątny, którego kąt ostry ma miarę . Wszystkie krawędzie boczne mają długość i są nachylone do płaszczyzny podstawy pod kątem o mierze . Oblicz objętość tego ostrosłupa.