Zestaw użytkownika nr 3438_4133

Zestaw użytkownika
nr 3438_4133

Zadanie 1

Ze zbioru cyfr {1,2 ,3,4,5,6,7} losujemy kolejno bez zwracania dwie cyfry i zapisujemy je, tworząc liczbę dwucyfrową. Ile jest możliwości utworzenia w ten sposób liczby podzielnej przez 3?
A) 6 B) 12 C) 15 D) 14

Zadanie 2

Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia
A – na każdej kostce wypadła nieparzysta liczba oczek,
B – suma wyrzuconych oczek jest nie mniejsza niż 8.
Oblicz prawdopodobieństwo zdarzenia A ∪ B .

Zadanie 3

Ze zbioru liczb {1,2,3,4 ,5,6,7,8} wybieramy losowo jedną liczbę. Liczba p jest prawdopodobieństwem wylosowania liczby podzielnej przez 3. Wtedy
A) p < 0,3 B)  1 p = 3 C) p = 0,3 D)  1 p > 3

Zadanie 4

Z urny, w której jest 6 kul czarnych i 4 żółte, wyjęto dwa razy po jednej kuli ze zwracaniem. Oblicz prawdopodobieństwo, że wyjęto kule jednakowych kolorów.

Zadanie 5

W pudełku zmieszano 30 ziaren fasoli, 20 ziaren ciecierzycy i 50 ziaren grochu.

  • Losujemy jedno ziarenko. Jakie jest prawdopodobieństwo wylosowania ziarenka ciecierzycy?
  • Jako pierwsze wylosowano ziarenko fasoli. Jakie jest prawdopodobieństwo, że drugim wylosowanym ziarenkiem nie będzie ziarenko fasoli?
  • Z pudełka usunięto po 10% ziarenek każdego rodzaju. Jakie jest prawdopodobieństwo wylosowania ziarenka fasoli?
Zadanie 6

Dane są zbiory liczb całkowitych: {1,2,3,4 ,5 } i {1,2,3,4 ,5,6,7} . Z każdego z tych zbiorów wybieramy losowo po jednej liczbie. Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie podzielna przez 5.

Zadanie 7

Spośród 5 monet jednozłotowych, 7 dwuzłotowych i 6 pięciozłotowych wybieramy 3 monety. Oblicz prawdopodobieństwo, że wszystkie trzy monety będą miały ten sam nominał.

Zadanie 8

W koszu znajdują się owoce: 12 jabłek i 8 pomarańczy. Wyjmujemy kolejno trzy owoce, nie odkładając ich do kosza. Jakie jest prawdopodobieństwo, że wylosujemy dokładnie dwie pomarańcze.

Zadanie 9

Z pojemnika, w którym są dwa losy wygrywające i trzy losy puste, losujemy dwa razy po jednym losie bez zwracania. Oblicz prawdopodobieństwo, że otrzymamy co najmniej jeden los wygrywający. Wynik przedstaw w postaci ułamka nieskracalnego.

Zadanie 10

Na loterii jest 10 losów, z których 4 są wygrywające. Kupujemy jeden los. Prawdopodobieństwo zdarzenia, że nie wygramy nagrody jest równe
A) 1 6 B) 3 5 C) 5 6 D) 2 3

Zadanie 11

O zdarzeniach losowych A i B wiemy, że:  1 2 4 P(A ) = 2 , P (B) = 3, P (A ∪ B) = 5 . Oblicz:

  • P(A ∩ B)
  • P(A ∖B )
Zadanie 12

Ze zbioru {1,2,3,4,5,6,7,8 ,9,10,11} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe
A) -9 22 B) 161 C) 511- D) 141

Zadanie 13

Ze zbioru liczb {1,2,3,4 ,7 ,9,10} losujemy dwie liczby (mogą się powtarzać). Oblicz prawdopodobieństwo, że suma wylosowanych liczb jest parzysta.

Zadanie 14

Ze zbioru dwucyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Prawdopodobieństwo otrzymania liczby podzielnej przez 30 jest równe
A) 2- 90 B) -3 90 C) -1 90 D) 10 90

Zadanie 15

Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia
A – na każdej kostce wypadła nieparzysta liczba oczek,
B – suma wyrzuconych oczek jest nie mniejsza niż 8.
Oblicz prawdopodobieństwo zdarzenia A ∪ B .

Arkusz Wersja PDF
spinner