Zestaw użytkownika nr 3630_2220

Zestaw użytkownika
nr 3630_2220

Zadanie 1

Suma drugiego, czwartego i szóstego wyrazu ciągu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego i trzeciego jest równa 185. Wyznacz pierwszy wyraz i różnicę tego ciągu.

Zadanie 2

Dany jest ciąg arytmetyczny (an ) dla n ≥ 1 , w którym a 7 = 1, a11 = 9 .

  • Oblicz pierwszy wyraz a1 i różnicę r ciągu (an ) .
  • Sprawdź, czy ciąg (a ,a ,a ) 7 8 11 jest geometryczny.
  • Wyznacz takie n , aby suma n początkowych wyrazów ciągu (an) miała wartość najmniejszą.
Zadanie 3

Dany jest ciąg (an) mający tę własność, że dla każdej liczby naturalnej n suma n początkowych wyrazów tego ciągu jest równa 12(7n2 − n) . Oblicz dwudziesty wyraz tego ciągu. Wykaż, że (an) jest ciągiem arytmetycznym.

Zadanie 4

Suma n początkowych wyrazów ciągu (an) wyraża się wzorem Sn = 5n + 1 . Wyznacz wzór na n -ty wyraz ciągu (an) dla n ≥ 2 .

Zadanie 5

Długości boków trójkąta tworzą ciąg geometryczny. Jaki warunek spełniać musi iloraz tego ciągu?

Zadanie 6

Długości boków trójkąta tworzą trzy kolejne wyrazy ciągu arytmetycznego o różnicy 1. Oblicz długości boków tego trójkąta, jeśli jego pole wynosi  √ --- 0,75 15 .

Zadanie 7

Wyznacz liczby a oraz b , dla których ciąg (a,b ,1 ) jest ciągiem arytmetycznym, natomiast ciąg (1 ,a,b) jest ciągiem geometrycznym.

Zadanie 8

Pierwszy wyraz ciągu arytmetycznego jest równy -5, a suma dwudziestu początkowych wyrazów tego ciągu jest równa 1230. Wyznacz różnicę tego ciągu.

Zadanie 9

Pierwszy wyraz malejącego ciągu arytmetycznego (an) jest równy 3, a iloczyn wyrazów czwartego i piątego równy jest 15. Oblicz różnicę ciągu (an) oraz sumę 14 jego początkowych wyrazów.

Zadanie 10

Piąty wyraz ciągu arytmetycznego jest równy 26, a suma pięciu początkowych wyrazów tego ciągu jest równa 70. Oblicz pierwszy wyraz tego ciągu.

Zadanie 11

Dany jest ciąg arytmetyczny o pierwszym wyrazie a1 = − 20 i różnicy r = 4 . Wyznacz liczbę n , dla której suma częściowa Sn jest równa 780.

Arkusz Wersja PDF
spinner