Zestaw użytkownika nr 4117_1087
Zestaw użytkownika
nr 4117_1087
Po rozwinięciu powierzchni bocznej walca na płaszczyźnie otrzymano kwadrat o boku . Objętość tego walca jest równa
A) B) C) D)
Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 2, a krawędź boczna długość 6.
Podstawą graniastosłupa jest trójkąt prostokątny, w którym przeciwprostokątna ma długość 8 cm, a jeden z kątów ma miarę . Powierzchnia boczna tego graniastosłupa po rozwinięciu na płaszczyznę jest kwadratem. Oblicz pole powierzchni całkowitej i objętość tego graniastosłupa.
Podstawą graniastosłupa prawidłowego jest trójkąt, w którym długość wysokości wynosi . Przekątne ścian bocznych wychodzące z jednego wierzchołka tworzą kąt o mierze . Oblicz pole powierzchni całkowitej i objętość graniastosłupa. Wynik podaj z dokładnością do 1cm.
Dany jest ostrosłup prawidłowy czworokątny o podstawie . Pole trójkąta jest równe 120, a cosinus kąta jest równy . Oblicz pole powierzchni bocznej tego ostrosłupa.
Podstawą ostrosłupa jest trójkąt . Krawędź jest wysokością ostrosłupa (zobacz rysunek).
Oblicz objętość ostrosłupa , jeśli wiadomo, że .
W ostrosłupie prawidłowym czworokątnym o krawędzi podstawy 18 cm, kąt między wysokościami przeciwległych ścian bocznych ma miarę . Oblicz pole powierzchni bocznej tego ostrosłupa. Wykonaj odpowiedni rysunek i zaznacz kąt .
Objętość graniastosłupa prawidłowego trójkątnego jest równa , a pole powierzchni bocznej tego graniastosłupa jest równe 72. Oblicz długość krawędzi podstawy oraz długość wysokości tego graniastosłupa.
W ostrosłupie prawidłowym trójkątnym krawędź boczna ma długość 6, a pole ściany bocznej jest równe . Oblicz objętość tego ostrosłupa.
Podstawą ostrosłupa jest prostokąt o bokach 6cm i 8cm. Każda krawędź boczna jest nachylona do płaszczyzny podstawy pod katem . Oblicz pole powierzchni ostrosłupa.
Podstawą ostrosłupa jest kwadrat (patrz rysunek).
Krawędź jest wysokością tego ostrosłupa. Odległość punktu od krawędzi jest równa , a kąt dwuścienny między ścianami i ma miarę , gdzie . Oblicz:
- odległość punktu od krawędzi
- wysokość tego ostrosłupa.