Zestaw użytkownika nr 4172_8303

Zestaw użytkownika
nr 4172_8303

Zadanie 1

Ciąg (an ) , gdzie n ≥ 1 , jest rosnącym ciągiem geometrycznym. Wyznacz największą wartość funkcji f (x) = 2xa 6a2 − a 4a3x2 − a3a6 .

Zadanie 2

Dany jest ciąg o wyrazie ogólnym an = − 2n + 6 . Wybierz sto kolejnych początkowych wyrazów ciągu an i oblicz dla jakiej liczby naturalnej k stosunek wyrazu stojącego na miejscu k , licząc od początku, do wyrazu stojącego na miejscu k , licząc od końca, jest równy -3 16 .

Zadanie 3

Suma trzech początkowych wyrazów nieskończonego ciągu geometrycznego wynosi 6, a suma S wszystkich wyrazów tego ciągu jest równa 163 . Dla jakich naturalnych n spełniona jest nierówność |S − Sn| < -1 96 ?

Zadanie 4

Długości boków trójkąta są kolejnymi wyrazami rosnącego ciągu geometrycznego o ilorazie q , a cosinus jednego z jego kątów jest równy  q − 4 .

  • Wyznacz q .
  • Wiedząc, że promień okręgu opisanego na tym trójkącie ma długość  √ -- 2 2 , oblicz pole tego trójkąta.
Zadanie 5

Ciąg (bn ) jest nieskończonym ciągiem liczb dodatnich, a ciąg (an) spełnia warunek

an+ 1 − an = lo g2bn − log b101−n, dla n = 1,2,...,100.

Oblicz a101 − a1 .

Zadanie 6

Pierwszy, trzeci i jedenasty wyraz ciągu arytmetycznego o różnicy r ⁄= 0 są kolejnymi wyrazami ciągu geometrycznego o ilorazie q . Dla jakich wartości parametru m funkcja f(x ) = x2 + mx + q osiąga minimum większe od -196?

Zadanie 7

Wykaż, że jeżeli liczby  2 2 a ,b i  2 c tworzą ciąg arytmetyczny, który nie jest stały, to liczby b+1c-,a1+c- i a+1b- również tworzą ciąg arytmetyczny.

Zadanie 8

W ciągu arytmetycznym o nieparzystej liczbie wyrazów suma wyrazów stojących na miejscach nieparzystych równa się 44, a suma pozostałych wynosi 33. Znajdź wyraz środkowy i liczbę wyrazów tego ciągu.

Zadanie 9

Ciąg (an) dany jest wzorem  5−-3n an = 7 , dla n ≥ 1 .

  • Oblicz sumę a2 + a4 + a6 + ...+ a104 .
  • Ustalmy n > 6 . Dla jakich x liczby an ,x2 + 2,an są kolejnymi wyrazami ciągu geometrycznego?
Zadanie 10

Suma n początkowych wyrazów ciągu (an) dla każdego n ⁄= 1 określona jest wzorem Sn = 2n2 − 14n .

  • Wykaż, że ciąg (an) jest ciągiem arytmetycznym.
  • Wykaż, że jeżeli suma n początkowych wyrazów ciągu dla każdego n ≥ 1 określona jest wzorem  2 Sn = 2n − 1 4n + 1 , to ciąg ten nie jest arytmetyczny.
  • Znajdź takie trzy kolejne wyrazy ciągu (an) , aby kwadrat środkowego wyrazu był o 48 mniejszy od różnicy kwadratów wyrazów z nim sąsiadujących.
Arkusz Wersja PDF
spinner