Zestaw użytkownika nr 4322_5788
Funkcja kwadratowa cz. 1Grupa ISuma punktów: 24
Punkty i należą do wykresu funkcji . Funkcja ma dwa miejsca zerowe, a wierzchołek paraboli będącej jej wykresem należy do prostej . Znajdź wzór tej funkcji.
Znajdź wzór funkcji kwadratowej , której wykresem jest parabola o wierzchołku przechodząca przez punkt o współrzędnych . Otrzymaną funkcję przedstaw w postaci kanonicznej. Oblicz jej miejsca zerowe i naszkicuj wykres.
Rozwiąż równanie .
Funkcja kwadratowa jest określona wzorem .
- Wyznacz najmniejszą i największą wartość funkcji w przedziale .
- Rozwiąż nierówność .
Większa część uczniów klasy liczącej 31 osób zachorowała na grypę. Zdrowi uczniowie postanowili wysłać chorym kolegom kartki z pozdrowieniami. Wiedząc, że każdy zdrowy uczeń wysłał do każdego chorego kolegi kartkę oraz, że liczba wysłanych kartek była największa z możliwych, oblicz ilu uczniów zachorowało na grypę.