Zestaw użytkownika nr 4479_3897

Zestaw użytkownika
nr 4479_3897

Zadanie 1
(5 pkt)

O zdarzeniach A i B wiadomo, że P (B) = 0,6 , P(A ∪ B) = 0 ,9 oraz P (A ∖ B′) = 0,5 . Oblicz prawdopodobieństwo zdarzenia A .

Zadanie 2
(5 pkt)

Wiadomo, że zdarzenia A i B są niezależne oraz  1 P (A ∖ B) = 6 ,  1 P (B ∖ A ) = 4 . Oblicz P (A ∪ B ) .

Zadanie 3
(5 pkt)

Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia
A – na każdej kostce wypadła nieparzysta liczba oczek,
B – suma wyrzuconych oczek jest nie mniejsza niż 8.
Oblicz prawdopodobieństwo zdarzenia A ∪ B .

Zadanie 4
(5 pkt)

Ze zbioru {1,2,3,...,102} losujemy 2 różne liczby. Jakie jest prawdopodobieństwo, że suma wylosowanych liczb jest podzielna przez 3?

Zadanie 5
(5 pkt)

Dane są zbiory liczb całkowitych: {1,2,3,4 ,5 } i {1,2,3,4 ,5,6,7} . Z każdego z tych zbiorów wybieramy losowo po jednej liczbie. Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie podzielna przez 5.

Zadanie 6
(5 pkt)

Ze zbioru Z = { 1,2,3,...,2n + 1} , gdzie n ∈ N wylosowano równocześnie dwie liczby. Wyznacz n , tak aby prawdopodobieństwo wylosowania liczb, których suma jest liczbą nieparzystą było większe od 713- .

Arkusz Wersja PDF
spinner