Zestaw użytkownika nr 4826_1987

Zestaw użytkownika
nr 4826_1987

Zadanie 1

Oblicz wysokość prostopadłościanu, którego podstawa jest prostokątem o wymiarach 3 i 4, a pole powierzchni całkowitej wynosi 94.

Zadanie 2

Oblicz pole powierzchni całkowitej i objętość prostopadłościanu ABCDA ′B′C′D ′ , w którym krawędź AB ma długość 10 cm i tworzy z przekątną A ′B ściany bocznej kąt 60∘ , a krawędź BC jest o cztery centymetry krótsza od krawędzi AB .

Zadanie 3

Mrówka przeszła po powierzchni sześcianu z wierzchołka A do wierzchołka będącego drugim końcem przekątnej wychodzącej z wierzchołka A , przy czym była to droga najkrótsza. Narysuj siatkę sześcianu i oblicz odległość, jaką pokonała mrówka, jeżeli krawędź sześcianu ma długość √ -- 5 .

Zadanie 4

Oblicz objętość i pole powierzchni graniastosłupa, którego podstawą jest romb o przekątnych długości 6 cm i 8 cm, którego przekątna ściany bocznej tworzy z krawędzią podstawy kąt o mierze 45∘ .

Zadanie 5

Pole powierzchni czworościanu foremnego jest równe  √ -- 7 2 3 . Oblicz długość krawędzi tego czworościanu.

Zadanie 6

W graniastosłupie prawidłowym czworokątnym powierzchnia boczna po rozwinięciu jest kwadratem o polu S = 400 cm 2 . Oblicz objętość i pole powierzchni całkowitej tej bryły .

Zadanie 7

Oblicz pole powierzchni i objętość sześcianu, którego przekątna ma długość  √ -- 4 3 cm .

Zadanie 8

Bryła przedstawiona na poniższym rysunku powstała przez wycięcie z graniastosłupa prostego trójkątnego innego graniastosłupa prostego. Oblicz pole powierzchni i objętość tej bryły.


PIC


Zadanie 9

Oblicz objętość bryły, której kształt i wymiary przedstawiono na rysunku. Zapisz obliczenia.


PIC


Zadanie 10

Popatrz na kostkę przedstawioną na rysunku. Wiadomo, że na każdej ścianie narysowany jest odcinek oraz że odcinki na przeciwległych ścianach są równoległe. Narysuj siatkę z której można skleić tę kostkę. Na każdej ścianie narysuj odpowiedni odcinek.


PIC


Zadanie 11

Z jednakowych sześciennych kostek, których krawędź ma długość 1, sklejono bryłę przedstawioną na rysunku.


PIC


Ile kostek należy dokleić do tej bryły, aby otrzymać wypełniony kostkami sześcian?

Zadanie 12

Ile ścian bocznych ma graniastosłup o 14 wierzchołkach?

Zadanie 13

Wysokość prostopadłościanu o podstawie kwadratowej jest dwa razy dłuższa od krawędzi podstawy. Objętość prostopadłościanu jest równa  √ -- 6 3 . Wyznacz pole powierzchni całkowitej tego prostopadłościanu.

Zadanie 14

Graniastosłup prawidłowy czworokątny o krawędzi 4 cm i wysokości 3 cm przecięto płaszczyzną, która zawiera przekątne przeciwległych ścian bocznych. Jakie pole ma ten przekrój?

Arkusz Wersja PDF
spinner