Zestaw użytkownika nr 5098_4851

Planimetria 2

Zadanie 1

W rombie jedna z przekątnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekątnych pole rombu jest większe od 5cm 2 ?

Zadanie 2

Czy istnieje taki wielokąt, który ma 2 razy więcej przekątnych niż boków?

Zadanie 3

Do dwóch okręgów o promieniach długości 3cm i 10cm poprowadzono wspólną styczną tak, że okręgi znajdują się po różnych stronach tej stycznej. Odległość między środkami okręgów wynosi 39 cm. Oblicz długość odcinka między punktami styczności.

Zadanie 4

Wyznacz promień okręgu wpisanego w trójkąt równoramienny o ramieniu długości b i kącie o mierze α przy podstawie.

Zadanie 5

Na bokach AB i AC trójkąta ABC , który nie jest równoramienny, wybrano takie punkty D i E , że |AD | : |DB | = 1 : k oraz |AE | : |EC | = k : 1 , dla k ∈ (0,+ ∞ ) .


PIC


  • Wyznacz wzór funkcji f (k) , która jest zdefiniowana jako stosunek pól trójkątów ADE i ABC .
  • Wiedząc że |AB| |AC| = m , dla m ∈ (0,1 ) wyznacz wszystkie wartości parametru k , dla których trójkąty ADE i ABC są podobne.
Zadanie 6

Pole trapezu jest równe P , a stosunek długości podstaw trapezu wynosi 2. Przekątne dzielą ten trapez na cztery trójkąty. Oblicz pole każdego z tych trójkątów.

Zadanie 7

Suma długości dwóch boków trójkąta wynosi 6 cm, a miara kąta pomiędzy tymi bokami wynosi 60∘ . Jaką najmniejszą wartość ma obwód tego trójkąta.

Zadanie 8

Rysunek przedstawia kształt obszaru zakreślanego przez wycieraczkę samochodową.


PIC


Wiedząc, że |∡AOC | = 150∘ oraz |AB | = |BO | = 0,3 m oblicz jakie jest pole obszaru oczyszczanego przez wycieraczkę. Przyjmując, że π ≈ 3 ,14 podaj wynik z dokładnością do 0,01 m .

Zadanie 9

W trapezie równoramiennym, który nie jest równoległobokiem, ramię ma długość 7 cm, a przekątna 8 cm. Oblicz długości podstaw trapezu wiedząc, że odcinek łączący środki ramion trapezu ma długość 4 cm.

Zadanie 10

W trapezie równoramiennym długość krótszej podstawy wynosi 9 cm, przekątnej 17 cm a ramienia 10 cm. Oblicz jego pole.

Zadanie 11

Punkt E leży na ramieniu BC trapezu ABCD , w którym AB ∥ CD . Udowodnij, że ∡AED = ∡BAE + ∡CDE .

Zadanie 12

Dane jest koło o promieniu długości 16 cm. W kole tym poprowadzono cięciwę opartą na łuku odpowiadającym kątowi środkowemu o mierze 120∘ . Znajdź odległość tej cięciwy od środka koła.

Zadanie 13

Dany jest trójkąt prostokątny, w którym a , b oznaczają długości przyprostokątnych, α jest miarą kąta ostrego leżącego naprzeciw przyprostokątnej a . Wiadomo, że  √-- sin α = -10- 10 . Oblicz

  • tangens kąta α ;
  • wartość wyrażenia  2 3 ⋅aa−b-+ 2 ⋅a2b+b2 .

PIC

Zadanie 14

Podaj wymiary prostokąta, którego boki różnią się o 6 cm, a przekątna ma długość 30 cm.

Zadanie 15

Dany jest równoramienny trójkąt prostokątny, którego przeciwprostokątna ma długość 2. Bok AB prostokąta ABCD zawiera się w przeciwprostokątnej tego trójkąta, zaś punkty C i D należą do przyprostokątnych. Oblicz długości boków prostokąta ABCD wiedząc, że kwadrat długości jego przekątnej AC ma wartość najmniejszą z możliwych.

Zadanie 16

Liczby x− 1,x,5 są długościami boków trójkąta równoramiennego. Oblicz x .

Zadanie 17

Z punktu A leżącego na okręgu o promieniu r = 6 cm i środku O poprowadzono dwie równej długości cięciwy AB i AC tworzące kąt 30∘ . Oblicz pole czworokąta ABOC .

Zadanie 18

W prostokącie połączono środki sąsiednich boków. Powstały w ten sposób romb ma obwód 40 cm i pole równe 9 6 cm 2 . Oblicz długości boków prostokąta.

Zadanie 19

Przyprostokątne trójkąta prostokątnego ABC mają długości 12 i 6. Oblicz długość promienia okręgu stycznego do obu przyprostokątnych, którego środek O leży na przeciwprostokątnej, oraz oblicz odległości środka O od wierzchołków trójkąta ABC .

Zadanie 20

Jaki warunek musi spełniać liczba x , aby istniał trójkąt o bokach 2x,x,4 ?

Zadanie 21

Dany jest trójkąt równoboczny ABC . Okrąg o średnicy AB przecina bok BC w punkcie D .


PIC


Wykaż, że |CD | = |DB | .

Zadanie 22

Punkt M jest punktem wspólnym przekątnych trapezu prostokątnego ABCD . Punkt N jest punktem wspólnym przekątnej BD i wysokości CE opuszczonej na dłuższą podstawę AB . Wykaż, że |DM |2 = |MN |⋅|MB | .


PIC


Zadanie 23

Udowodnij, że trzy środkowe rozcinają trójkąt na sześć części o równych polach.

Zadanie 24

Dany jest trójkąt prostokątny o polu  √ -- 2 3 i kącie ostrym  ∘ 30 . Oblicz długości przyprostokątnych tego trójkąta.

Zadanie 25

Liczba przekątnych wielokąta wypukłego, w którym jest n boków i n ≥ 3 wyraża się wzorem Pn = n(n−3) 2 .

  • Oblicz liczbę przekątnych w dwudziestokącie wypukłym.
  • Oblicz, ile boków ma wielokąt wypukły, w którym liczba przekątnych jest pięć razy większa od liczby boków.
  • Sprawdź, czy jest prawdziwe następujące stwierdzenie: Każdy wielokąt wypukły o parzystej liczbie boków ma parzystą liczbę przekątnych. Odpowiedź uzasadnij.
  • Uzasadnij, że jeżeli liczba boków wielokąta wypukłego jest nieparzysta, to liczba jego przekątnych jest wielokrotnością liczby jego boków.
Zadanie 26

Kąt ostry między przekątnymi równoległoboku ABCD ma miarę  ∘ 60 . Przekątna AC ma długość 6, a przekątna BD jest prostopadła do boku AD . Oblicz długości boków równoległoboku.

Zadanie 27

Przez środek S okręgu wpisanego w trójkąt ABC poprowadzono prostą równoległą do boku AB , która przecina boki CA i CB odpowiednio w punktach E i D .
Wykaż, że |ED | = |EA |+ |DB | .


PIC


Zadanie 28

Na bokach AD i CD kwadratu ABCD o boku długości 1 wybrano punkty E i F w ten sposób, że AE = 1k i DF = m1 , dla k,m ∈ (1,+ ∞ ) . Niech S będzie punktem przecięcia odcinków AF i BE


PIC


  • Wykaż, że jeżeli trójkąt ABS jest prostokątny to k = m .
  • Oblicz cosinus kąta ASB jeżeli k = 3 i m = 2 .
Zadanie 29

Krótsza przekątna rombu o długości  √ -- 8 3 cm dzieli go na dwa trójkąty równoboczne. Oblicz pole rombu.

Zadanie 30

Dany jest trapez prostokątny ABCD o podstawach AB i CD , w którym boki AB i BC są prostopadłe. Dwusieczne kątów A i D przecinają się w punkcie S leżącym na boku BC . Wykaż, że |BS | = |SC | .

Zadanie 31

W okręgu o promieniu 5 poprowadzono dwie równoległe cięciwy o długościach 6 i 8. Oblicz odległość między tymi cięciwami.

Zadanie 32

Dany jest pięciokąt foremny ABCDE o boku długości a . Wiedząc, że  √- cos72 ∘ = -5−-1 4

  • wykaż, że długość przekątnej pięciokąta ABCDE jest równa  √ - 1+2-5a ;
  • oblicz długość promienia okręgu wpisanego w pięciokąt ABCDE .
Zadanie 33

Dany jest trójkąt o wymiarach a = 8 cm , b = 12 cm ,c = 16 cm . Oblicz obwód trójkąta podobnego w skali 5.

Zadanie 34

Na bokach AD , DC i CB kwadratu ABCD wybrano punkty K , M i L ten sposób, że |DK | = 2|KA | , |DM | = 2 |MC | , oraz |BL | = 2|LC | .

  • Uzasadnij, że trójkąt KLM jest prostokątny.
  • Oblicz tangensy kątów ostrych trójkąta KLM .

PIC

Zadanie 35

Pole rombu jest równe 120. Gdyby zwiększyć długości jego przekątnych odpowiednio o 2 i 5 to pole wzrosłoby o 55. Oblicz obwód rombu. Podaj wszystkie możliwe odpowiedzi.

Zadanie 36

W trójkącie równobocznym ABC połączono środki wysokości otrzymując trójkąt KLM . Oblicz stosunek pól trójkątów ABC i KLM .

Zadanie 37

Liczby 4,10,c są długościami boków trójkąta równoramiennego. Oblicz c .

Zadanie 38

Dany jest czworokąt wypukły ABCD niebędący równoległobokiem. Punkty M ,N są odpowiednio środkami boków AB i CD . Punkty P ,Q są odpowiednio środkami przekątnych AC i BD . Uzasadnij, że MQ ∥ PN .

Zadanie 39

W prostokącie ABCD , w którym stosunek długości boków AB i BC jest równy 4:3, poprowadzono dwusieczne kątów ADB i BDC . Dwusieczne te przecinają boki AB i CB odpowiednio w punktach K i M . Oblicz stosunek pola prostokąta ABCD do pola trójkąta DKM .

Zadanie 40

Wszystkie wierzchołki czworokąta ABCD leżą na okręgu oraz ∡A = α . Oblicz miarę kąta ∡C .


PIC


Arkusz Wersja PDF
spinner