Zestaw użytkownika nr 5119_1671

Zestaw użytkownika
nr 5119_1671

Zadanie 1
(5 pkt)

Z urny, w której jest 6 kul czarnych i 4 żółte, wyjęto dwa razy po jednej kuli ze zwracaniem. Oblicz prawdopodobieństwo, że wyjęto kule jednakowych kolorów.

Zadanie 2
(5 pkt)

Dane są zbiory liczb całkowitych: {1,2,3,4 ,5 } i {1,2,3,4 ,5,6,7} . Z każdego z tych zbiorów wybieramy losowo po jednej liczbie. Oblicz prawdopodobieństwo, że suma wylosowanych liczb będzie podzielna przez 5.

Zadanie 3
(5 pkt)

Spośród 5 monet jednozłotowych, 7 dwuzłotowych i 6 pięciozłotowych wybieramy 3 monety. Oblicz prawdopodobieństwo, że wszystkie trzy monety będą miały ten sam nominał.

Zadanie 4
(5 pkt)

O zdarzeniach losowych A i B wiemy, że:  1 2 4 P(A ) = 2 , P (B) = 3, P (A ∪ B) = 5 . Oblicz:

  • P(A ∩ B)
  • P(A ∖B )
Zadanie 5
(5 pkt)

W wazonie stoi 12 czerwonych i 8 żółtych róż. Pani Krystyna wyjęła losowo dwie róże z wazonu. Oblicz prawdopodobieństwo, że wśród wybranych kwiatów jest przynajmniej jedna róża żółta.

Zadanie 6
(5 pkt)

10 kul rozmieszczamy w 10 szufladach. Jakie jest prawdopodobieństwo tego, że każda szuflada będzie zajęta?

Zadanie 7
(5 pkt)

Dla zdarzeń A ,B ⊆ Ω spełnione są warunki  ′ 2 ′ 2 4 P (A ) = 3,P (B ) = 9 ,P (A ∪ B ) = 5 . Oblicz P (A ∩ B ) .

Zadanie 8
(5 pkt)

Wiadomo, że  3 1 ′ 1 P (A ∪ B ) = 4, P(A ∩ B ) = 2, P(A ) = 3 . Oblicz prawdopodobieństwa zdarzeń A i B .

Zadanie 9
(1 pkt)

Ze zbioru dwucyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Prawdopodobieństwo otrzymania liczby podzielnej przez 30 jest równe
A) 10 90 B) -1 90 C) 2- 90 D) -3 90

Zadanie 10
(1 pkt)

Jeżeli A i B są zdarzeniami losowymi,  ′ B jest zdarzeniem przeciwnym do B , P (A) = 0,3 , P (B′) = 0,4 oraz A ∩ B = ∅ , to P (A ∪ B ) jest równe
A) 0,12 B) 0,18 C) 0,9 D) 0,6

Zadanie 11
(1 pkt)

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo otrzymania sumy oczek równej trzy wynosi
A) -1 18 B) 19 C) 112 D) 16

Arkusz Wersja PDF
spinner