Zestaw użytkownika nr 5239_8195

Zestaw użytkownika
nr 5239_8195

Zadanie 1

Prosta równoległa do jednego boku trójkąta dzieli jego pole na połowy. W jakim stosunku prosta ta dzieli pozostałe boki trójkąta?

Zadanie 2

Przyprostokątne trójkąta ABC mają długości 10 i 24. Przeciwprostokątna trójkąta KLM podobnego do niego ma długość 39. Oblicz pole trójkąta KLM .

Zadanie 3

Dany jest trójkąt prostokątny, w którym a , b oznaczają długości przyprostokątnych, α jest miarą kąta ostrego leżącego naprzeciw przyprostokątnej a . Wiadomo, że  √-- sin α = -10- 10 . Oblicz

  • tangens kąta α ;
  • wartość wyrażenia  2 3 ⋅aa−b-+ 2 ⋅a2b+b2 .

PIC

Zadanie 4

Liczby x− 1,x,5 są długościami boków trójkąta równoramiennego. Oblicz x .

Zadanie 5

Przez środek S okręgu wpisanego w trójkąt ABC poprowadzono prostą równoległą do boku AB , która przecina boki CA i CB odpowiednio w punktach E i D .
Wykaż, że |ED | = |EA |+ |DB | .


PIC


Zadanie 6

W trójkącie równobocznym ABC połączono środki wysokości otrzymując trójkąt KLM . Oblicz stosunek pól trójkątów ABC i KLM .

Zadanie 7

Punkty  ′ ′ ′ A ,B ,C są środkami boków trójkąta ABC . Pole trójkąta  ′ ′ ′ A B C jest równe 4. Oblicz pole trójkąta ABC .


PIC


Zadanie 8

Wysokość trójkąta prostokątnego poprowadzona na przeciwprostokątną dzieli ją na odcinki długości 1 cm i 49 cm. Oblicz pole tego trójkąta.

Zadanie 9

Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że |AD | = |BE | .


PIC


Zadanie 10

Prosta k równoległa do boku AB trójkąta ABC przecina boki AC oraz BC odpowiednio w punktach D i E (zobacz rysunek). Wiadomo, że pole trójkąta DEC wynosi 4 cm 2 , zaś pole trapezu ABED jest równe 8 cm 2 . Wykaż, że |AD-| √ -- |DC | = 3− 1 .


PIC


Zadanie 11

Oblicz sumę długości boków i pole trójkąta prostokątnego, w którym jedna z przyprostokątnych jest równa 10 cm, a druga jest o 2 cm krótsza od przeciwprostokątnej.

Zadanie 12

Podstawa trójkąta równoramiennego i środkowe poprowadzone z jej konców mają długość a . Oblicz długość wysokości poprowadzonej do podstawy.

Zadanie 13

Trójkąty ABC i CDE są równoboczne. Punkty A ,C i E leżą na jednej prostej. Punkty K ,L i M są środkami odcinków AC ,CE i BD (zobacz rysunek). Wykaż, że punkty K ,L i M są wierzchołkami trójkąta równobocznego.


PIC


Zadanie 14

W trójkącie ABC miara kąta ACB jest dwa razy większa od miary kąta CAB . Dwusieczna kąta ACB dzieli trójkąt ABC na dwa trójkąty. Uzasadnij, że jeden z otrzymanych trójkątów jest podobny do trójkąta ABC .

Arkusz Wersja PDF
spinner