Zestaw użytkownika nr 5343_5761

Zestaw użytkownika
nr 5343_5761

Zadanie 1

O zdarzeniach A i B wiadomo, że P (B) = 0,6 , P(A ∪ B) = 0 ,9 oraz P (A ∖ B′) = 0,5 . Oblicz prawdopodobieństwo zdarzenia A .

Zadanie 2

Zdarzenia losowe A ,B są zawarte w Ω oraz  ′ P (A ∩ B ) = 0,7 ( ′ A oznacza zdarzenie przeciwne do zdarzenia A , B′ oznacza zdarzenie przeciwne do zdarzenia B ). Wykaż, że P (A ′ ∩ B) ≤ 0 ,3 .

Zadanie 3

Prawdopodobieństwa zdarzeń A i B oraz zdarzeń do nich przeciwnych spełniają warunki: P (A ∪ B ′) = 0,23 i P(A ′ ∪ B ′) = 0,81 .

  • Oblicz P(B ) .
  • Wykaż, że jeżeli P(A ) < 0,21 to P(A ′ ∩ B ′) > 0,02 .
Zadanie 4

Wiadomo, że zdarzenia A i B są niezależne oraz  1 P (A ∖ B) = 6 ,  1 P (B ∖ A ) = 4 . Oblicz P (A ∪ B ) .

Zadanie 5

Dane są dwa takie zdarzenia A i B , że  1 P (B) ≤ 3 i  1- P (A ∩ B ) ≥ 10 . Czy może zachodzić równość P(B ∖ A ) = 415 ? Odpowiedź uzasadnij.

Zadanie 6

O zdarzeniach A i B wiadomo, że P (B) = 0,6 ,  ′ P (A ∪ B) = 0,8 , P (A ∖ B′) = 0,5 . Oblicz prawdopodobieństwo zdarzenia A .

Zadanie 7

A i B są takim zdarzeniami losowymi zawartymi w Ω , że P (A ∖ B) = P (B ∖A ) = 17 i P(A ′ ∪ B ′) = 1 . Oblicz P (A ′ ∩ B ′) .

Zadanie 8

Zdarzenia losowe A ,B są zawarte w Ω oraz  ′ P(A ∩ B ) = 0,1 i P (A ′ ∩ B) = 0 ,2 . Wykaż, że P (A ∩ B) ≤ 0 ,7 (A ′ oznacza zdarzenie przeciwne do zdarzenia A , B ′ oznacza zdarzenie przeciwne do zdarzenia B ).

Zadanie 9

Wiadomo, że  ′ ′ P (A ∩ B ) = P (B ∩ A ) , P (A ∪ B ) = 0,75 , P(A ∩ B ) = 0,25 . Oblicz: P(B ) i P(A ∖B ) .

Zadanie 10

Wiadomo, że  3- P (A) = 25 ,  ′ 7- P (B ) = 10 ,  2 P (A ∪ B ) = 5 . Oblicz P (A ∖ B) i P (A ′ ∩ B) .

Zadanie 11

Spośród wyrazów skończonego ciągu arytmetycznego (an) danego wzorem an = 5n + 8 , gdzie n = 1,2,...,15 wybieramy losowo 3. Oblicz prawdopodobieństwo, że iloczyn wybranych liczb jest podzielny przez 3.

Zadanie 12

Dany jest wielomian  3 2 W (x) = 8x − 6x + ax+ b . Jednym pierwiastkiem wielomianu jest prawdopodobieństwo otrzymania co najmniej 2 razy orła w trzykrotnym rzucie monetą. Drugi pierwiastek jest równy prawdopodobieństwu wypadnięcia parzystej liczby oczek na każdej kostce w rzucie dwiema kostkami. Wyznacz trzeci pierwiastek wielomianu.

Zadanie 13

Ze zbioru {1,2,3,4 ,5 ,6,7} losujemy liczbę x , a ze zbioru {− 7 ,−6 ,−5 ,−4 ,−3 ,−2 ,−1 } liczbę y . Oblicz prawdopodobieństwo tego, że x + y > 0 .

Zadanie 14

Spośród liczb  1 2 3 9 1 ,2 ,3 ,...,9 wybieramy losowo trzy. Oblicz prawdopodobieństwo, że iloczyn tych liczb jest parzysty.

Zadanie 15

Na loterii jest n losów, w tym 4 wygrywające. Kupujemy 2 losy. Dla jakiej liczby n prawdopodobieństwo otrzymania co najmniej jednego losu wygrywającego jest równe 1114 ?

Zadanie 16

Ze zbioru Z = { 1,2,3,...,2n + 1} , gdzie n ∈ N wylosowano równocześnie dwie liczby. Wyznacz n , tak aby prawdopodobieństwo wylosowania liczb, których suma jest liczbą nieparzystą było większe od 713- .

Zadanie 17

Ile maksymalnie kul zielonych można włożyć do urny, w której jest 7 kul czerwonych, aby prawdopodobieństwo wylosowania 2 kul różnokolorowych było większe lub równe 14 ?

Zadanie 18

Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia: A – na każdej kostce wypadła inna liczba oczek, B – suma oczek jest mniejsza od 6. Oblicz prawdopodobieństwo zdarzenia A ∖ B .

Zadanie 19

W urnie znajduje się n kul czarnych i 2n kul białych (n ∈ N , n ≥ 2 ). Losujemy jednocześnie dwie kule. Dla jakich n prawdopodobieństwo wylosowania dwóch kul tego samego koloru jest większe od prawdopodobieństwa wylosowania dwóch kul różnych kolorów?

Arkusz Wersja PDF
spinner