Zestaw użytkownika nr 5484_3641

Zestaw użytkownika
nr 5484_3641

Zadanie 1

Dane są wielomiany  3 2 W (x) = 2x − 3x − 8x − 3 i  2 P(x) = (x + 1 )(ax + bx + c) .

  • Wyznacz współczynniki a,b,c tak, aby W (x) = P (x) .
  • Przedstaw wielomian W (x) jako iloczyn wielomianów liniowych.
Zadanie 2

Wielomian W dany jest wzorem  3 2 W (x) = x + ax − 4x + b .

  • Wyznacz a,b oraz c tak, aby wielomian W był równy wielomianowi P , gdy P (x) = x3 + (2a + 3)x 2 + (a + b + c)x − 1 .
  • Dla a = 3 i b = 0 zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.
Zadanie 3

Wyznacz wartości a i b współczynników wielomianu  3 2 W (x) = x + ax + bx + 1 wiedząc, że W (2) = 7 oraz, że reszta z dzielenia W (x) przez (x − 3) jest równa 10.

Zadanie 4

Pierwiastkami wielomianu  3 2 W (x ) = x − x + ax + b są tylko dwie liczby: 2 oraz (-3).

  • Oblicz a i b .
  • Zapisz wielomian w postaci czynników liniowych.
Zadanie 5

Rozwiąż równanie  4 2 2 x − 3x = 3 − x .

Zadanie 6

Miejscem zerowym wielomianu  3 2 W (x ) = 2x + ax − 6x jest liczba (-1).

  • Oblicz a .
  • Wyznacz pozostałe miejsca zerowe W (x) .
Zadanie 7

Rozwiąż równanie  3 2 x+ x = 1 + x .

Zadanie 8

Liczba 3 jest pierwiastkiem wielomianu  3 2 W (x) = x − 4x − mx + 3 6 . Wyznacz parametr m i pozostałe pierwiastki tego wielomianu.

Zadanie 9

Dany jest wielomian  3 2 W (x) = x + 2x − 9x − 18 .

  • Wyznacz pierwiastki tego wielomianu.
  • Sprawdź, czy wielomiany W (x ) i P(x ) = (x+ 2)(x2 − 2x + 4) + (x + 2)(2x − 1 3) są równe.
  • Uzasadnij, że jeśli  √ --- x > 10 , to  3 2 x + 2x − 9x − 18 > 0 .
Arkusz Wersja PDF
spinner