Zestaw użytkownika nr 5503_8984

Zestaw użytkownika
nr 5503_8984

Zadanie 1

Dla jakich wartości parametru m dziedziną funkcji  -----3x2−4mx+-5----- f(x ) = (m+2)x4+6(m+ 2)x2+m 2 jest zbiór liczb rzeczywistych?

Zadanie 2

Liczba 2 jest miejscem zerowym wielomianu W (x) . Wyznacz resztę z dzielenia tego wielomianu przez wielomian P (x) = x 2 − 3x + 2 jeśli wiadomo, że w wyniku dzielenia wielomianu W (x ) przez dwumian (x − 1) otrzymujemy resztę 5.

Zadanie 3

Wyznacz wszystkie całkowite wartości k , dla których funkcja  2 f (x) = k-−k−k−42-x2 − (k− 2 )x+ k− 4 osiąga minimum i ma dwa różne miejsca zerowe.

Zadanie 4

Reszta z dzielenia wielomianu W (x) przez dwumian x − 1 jest równa 1, zaś reszta z dzielenia tego wielomianu przez x − 2 jest równa 4. Wyznacz resztę z dzielenia wielomianu W (x) przez wielomian x 2 − 3x + 2 .

Zadanie 5

Wiedząc, że zbiorem wartości funkcji f(x) jest przedział ⟨− 1;2⟩ wyznacz wszystkie wartości b , dla których funkcja g(x) = f (x)+ b nie ma miejsc zerowych.

Zadanie 6

Wyznacz największą wartość funkcji

 ∘ --------2----------2--- f(x) = 9− 4sin 2x − 8cos x− 3.
Zadanie 7

Przedstaw wielomian  4 3 2 W (x) = x − 2x − 3x + 4x − 1 w postaci iloczynu dwóch wielomianów stopnia drugiego o współczynnikach całkowitych i takich, że współczynniki przy drugich potęgach są równe jeden.

Zadanie 8

Wyznacz f(x + 1 ) jeżeli  2 f(x − 1) = 2x − 3x + 1 .

Zadanie 9

Wyznacz wszystkie wartości parametru m , dla których dziedziną funkcji

 2 2 f(x ) = log[(m + m − 6)x + (m − 2)x + 1]

jest zbiór wszystkich liczb rzeczywistych.

Zadanie 10

Wyznacz najmniejszą wartość funkcji  (ctg2x−tg2x)⋅sin22x f(x) = ---4cos2x⋅sin2x---- .

Zadanie 11

Wielomian W jest wielomianem stopnia 5 i spełnia warunki: W (3) = 1 oraz W (−3 ) = 2 . Wykaż, że nie wszystkie współczynniki wielomianu W są liczbami całkowitymi.

Zadanie 12

Wyznacz zbiór wartości funkcji  2 2 2 f(x) = (x − 2x − 2) + 4 (x − 2x− 2)− 1 .

Zadanie 13

Wyznacz najmniejszą i największą wartość funkcji  ----2----- f(x) = √2x2−4x+-3 na przedziale ⟨− 5,1 0⟩ .

Zadanie 14

Wielomian  3 2004 W (x) = (2x + 3x − 6) , po wykonaniu potęgowania i dokonaniu redukcji wyrazów podobnych, zapisano w postaci W (x) = anxn + an− 1xn−1 + ...+ a2x2 + a1x+ a0 . Oblicz sumę an + a + ...+ a + a + a n− 1 2 1 0 .

Zadanie 15

Wyznacz dziedzinę funkcji

 ∘ ------------------- ( x− 2 2x − 4 3x − 6 10x − 20 ) y = x3 − 3x2 − 4x + 12 + lo g5−x -----+ -------+ -------+ ...+ --------- 5 5 5 5
Zadanie 16

Oblicz wartość funkcji  x− 3 f(x) = |1 − 2 | dla argumentu

 ( --1-) x = log 13 log 2128+ lo g1264 ⋅log121 8+ log 21218 + 49log37 .
Zadanie 17

Uzasadnij, że dla każdej liczby naturalnej x wartość wielomianu W (x) = x5 − 5x3 + 4x jest liczbą podzielną przez 120.

Zadanie 18

Wykaż, że jeżeli wielomian  6 4 2 W (x) = x + ax + bx + c jest podzielny przez trójmian x2 + x+ 1 , to jest również podzielny przez trójmian x 2 − x + 1 .

Zadanie 19

Wyznacz zbiór wartości funkcji

 2 2 f(x ) = 2− 6sin xco sx − 3sin x + 5co s x.
Zadanie 20

Wyznacz resztę z dzielenia wielomianu  2 2005 W (x) = (x − 3x + 1) przez wielomian P(x) = x 2 − 4x + 3 .

Zadanie 21

Wykaż, że wielomian  2m m W (x) = (x − 2) + (x − 1) − 1 jest podzielny przez wielomian P(x) = x 2 − 3x + 2 dla każdego m ∈ N + .

Zadanie 22

Wyznacz dziedzinę funkcji

 ∘ ------------------- y = 3-+ 3--+ -3-+ 3-+ lo g 5−--x. x x2 x3 x4 2x+2 6− x
Arkusz Wersja PDF
spinner