Zestaw użytkownika nr 5636_8179

Zestaw użytkownika
nr 5636_8179

Zadanie 1

Wyznacz współrzędne wierzchołków trójkąta jeżeli środki jego boków mają współrzędne: P = (1,3),Q = (− 5,4),R = (− 6,7) .

Zadanie 2

Dla jakich wartości parametru α odległość punktu P = (1,2) od prostej y = x+ sin α jest mniejsza lub równa 1√2- .

Zadanie 3

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (− 2,− 4) oraz B = (− 5,2) . Jedno z jego ramion zawiera się w prostej o równaniu y = x − 2 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

Zadanie 4

Dany jest punkt M = (2 ,8 ) . Wyznacz równanie takiej prostej k , do której należy punkt M , że na ujemnej półosi Ox i dodatniej półosi Oy układu xOy prosta ta wyznacza odcinki OA i OB , których suma długości jest równa 6. Oblicz obwód trójkąta AOB .

Zadanie 5

Dane są punkty A (1,0),B(− 1,1) . Punkt C należy do okręgu o równaniu x 2 + y2 = 1 . Znajdź współrzędne punktu C , tak aby pole trójkąta było największe. Oblicz to pole.

Zadanie 6

Ile punktów wspólnych ma prosta MN z okręgiem  2 2 x + y − 2x − 6y = 0 jeśli M = (2009,40 12) oraz N = (− 50,− 106) .

Zadanie 7

Punkty A = (− 9,− 3) i B = (5,5) są wierzchołkami trójkąta prostokątnego ABC , w którym AB jest przeciwprostokątną. Wyznacz współrzędne wierzchołka C wiedząc, że leży on na osi Ox .

Zadanie 8

Dla jakich wartości parametru m równanie  2 2 x + y − 2mx + 2m − 1 = 0 opisuje okrąg?

  • Podaj wspórzędne środka i długość promienia okręgu.
  • Dla jakich wartości parametru m okrąg ten jest styczny do prostej o równaniu x = 4 ?
Zadanie 9

Dana jest prosta k o równaniu x + y − 12 = 0 oraz punkt M (− 5;9) wyznacz na prostej k takie punkty P i R aby |MP | = |P R| = 8 .

Zadanie 10

Wyznacz równanie takiej prostej przechodzącej przez punkt A (− 4,6) , która wraz z osiami układu współrzędnych ogranicza trójkąt o polu równym 2.

Zadanie 11

W okrąg o równaniu  2 2 x + y − 12x − 8y + 32 = 0 wpisano trójkąt równoboczny ABC w którym A = (2;6 ) . Oblicz współrzędne pozostałych wierzchołków trójkąta.

Zadanie 12

Punkt A (− 1;− 2) jest wierzchołkiem rombu, którego jeden z boków zawiera się w prostej k o równaniu x − 2y − 3 = 0 . Środkiem symetrii tego rombu jest punkt S(2;2) . Oblicz współrzędne pozostałych wierzchołków rombu i oblicz jego pole.

Zadanie 13

Dany jest okrąg  2 2 (x− 2) + (y − 1 ) = 3 . Oblicz pole rombu opisanego na tym okręgu, jeśli kąt ostry rombu ma miarę 60∘ .

Zadanie 14

Jeden z boków kwadratu ABCD jest zawarty w prostej o równaniu 2x − y − 2 = 0 . Wierzchołek A ma współrzędne (1,5) .

  • Znajdź współrzędne pozostałych wierzchołków.
  • Oblicz pole kwadratu ABCD .
Zadanie 15

Dla jakich wartości parametru m proste x = my + 1 oraz y = mx − 1 przecinają się w jednym punkcie, który leży poniżej prostej x = 1 − 4y ?

Zadanie 16

Na paraboli o równaniu  2 y = x + 6x + 5 znajdź współrzędne punktu A , którego odległość od prostej o równaniu y = 2x − 1 3 jest najmniejsza.

Zadanie 17

Znajdź równanie krzywej, którą tworzą wszystkie punkty jednakowo odległe od okręgu x2 + y2 − 2y = 0 i od prostej y + 1 = 0 .

Arkusz Wersja PDF
spinner