Zestaw użytkownika nr 6507_8969

Zestaw użytkownika
nr 6507_8969

Zadanie 1

Dany jest ciąg arytmetyczny (an ) dla n ≥ 1 , w którym a 7 = 1, a11 = 9 .

  • Oblicz pierwszy wyraz a1 i różnicę r ciągu (an ) .
  • Sprawdź, czy ciąg (a ,a ,a ) 7 8 11 jest geometryczny.
  • Wyznacz takie n , aby suma n początkowych wyrazów ciągu (an) miała wartość najmniejszą.
Zadanie 2

Podaj wzór na wyraz ogólny ciągu (an) określonego w następujący sposób: ciąg (an) jest ciągiem kolejnych liczb naturalnych, które przy dzieleniu przez 5 dają resztę 1.

Zadanie 3

Liczby x1 i x2 są pierwiastkami równania  2 x + x+ A = 0 , a liczby x 3 i x 4 są pierwiastkami równania x2 + 4x + B = 0 . Wiadomo, że ciąg (x1,x2,x3,x 4) jest ciągiem geometrycznym o wyrazach całkowitych. Wyznacz A i B .

Zadanie 4

Długości boków trójkąta są kolejnymi wyrazami rosnącego ciągu geometrycznego o ilorazie q , a cosinus jednego z jego kątów jest równy  q − 4 .

  • Wyznacz q .
  • Wiedząc, że promień okręgu opisanego na tym trójkącie ma długość  √ -- 2 2 , oblicz pole tego trójkąta.
Arkusz Wersja PDF
spinner