Zestaw użytkownika nr 7137_3112
Zestaw użytkownika
nr 7137_3112
Podstawą graniastosłupa prawidłowego jest trójkąt, w którym długość wysokości wynosi . Przekątne ścian bocznych wychodzące z jednego wierzchołka tworzą kąt o mierze . Oblicz pole powierzchni całkowitej i objętość graniastosłupa. Wynik podaj z dokładnością do 1cm.
W graniastosłupie prawidłowym trójkątnym poprowadzono płaszczyznę wyznaczoną przez wysokość dolnej podstawy i ten z wierzchołków górnej podstawy, że płaszczyzna z płaszczyzną podstawy graniastosłupa tworzy kąt o mierze . Pole przekroju graniastosłupa wyznaczonego przez płaszczyznę jest równe . Oblicz objętość graniastosłupa.
Podstawą graniastosłupa jest trapez równoramienny o podstawach długości 56cm i 40cm oraz wysokości 15cm. Wiedząc, że wysokość graniastosłupa jest równa 10cm, oblicz jego pole powierzchni całkowitej.
Oblicz objętość i pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość 2, a krawędź boczna długość 6.
W ostrosłupie podstawa jest trójkątem prostokątnym, . Sinus jednego z kątów ostrych podstawy jest równy 0,6 . Promień okręgu opisanego na podstawie ma długość 10cm. Wysokość ostrosłupa ma długość 24cm. Oblicz:
- objętość ostrosłupa;
- tangens kąta nachylenia ściany bocznej ostrosłupa, zawierającej przeciwprostokątną podstawy, do płaszczyzny podstawy.
Odległość środka wysokości stożka od jego powierzchni bocznej jest trzy razy mniejsza niż promień jego podstawy. Oblicz sinus kąta rozwarcia stożka.
Pole powierzchni całkowitej stożka jest trzy razy większe od pola jego podstawy. Oblicz stosunek objętości stożka do objętości wpisanej w niego kuli.
Przekątna przekroju osiowego walca ma długość 5 cm i jest nachylona do płaszczyzny podstawy pod kątem . Jaką długość ma promień podstawy tego walca? Jaka jest jego wysokość?
Powierzchnia boczna walca po rozwinięciu jest prostokątem, którego przekątna ma długość 18 cm i tworzy z bokiem odpowiadającym wysokości walca kąt o mierze . Oblicz objętość walca.