Zestaw użytkownika nr 7212_7479

Zestaw użytkownika
nr 7212_7479

Zadanie 1

Prostokąt ABCD obracając się wokół boku AB , zakreślił walec w 1 . Ten sam prostokąt obracając się wokół boku AD , zakreślił walec w2 . Otrzymane walce mają równe pola powierzchni całkowitych. Wykaż, że prostokąt ABCD jest kwadratem.

Zadanie 2

W pojemniku o kształcie walca o promieniu podstawy R = 8 umieszczono dwie kule o promieniu r = 5 , w ten sposób, że są do siebie styczne i każda z nich dotyka powierzchni bocznej walca, jak na rysunku. Jaka co najmniej musi być wysokość pojemnika, aby kule całkowicie się w nim mieściły. Oblicz objętość tego walca.


PIC


Zadanie 3

Przekątna przekroju osiowego walca ma długość 5 cm i jest nachylona do płaszczyzny podstawy pod kątem 60 ∘ . Jaką długość ma promień podstawy tego walca? Jaka jest jego wysokość?

Zadanie 4

Powierzchnia boczna walca po rozwinięciu jest prostokątem, którego przekątna o długości d tworzy z wysokością kąt o mierze α .

  • Wyprowadź wzór na objętość walca.
  • Oblicz tę objętość dla d = 8 3√ 2 i α = 60 ∘ .
Zadanie 5

Powierzchnia boczna walca po rozwinięciu jest prostokątem, którego przekątna ma długość 18 cm i tworzy z bokiem odpowiadającym wysokości walca kąt o mierze 60∘ . Oblicz objętość walca.

Zadanie 6

Długość promienia walca zmniejszono dziesięciokrotnie. Ile razy trzeba zwiększyć wysokość tego walca aby objętość się nie zmieniła?

Zadanie 7

Powierzchnia boczna walca po rozwinięciu na płaszczyznę jest prostokątem. Przekątna tego prostokąta ma długość 12 i tworzy z bokiem, którego długość jest równa wysokości walca, kąt o mierze 30∘ .

  • Oblicz pole powierzchni bocznej tego walca.
  • Sprawdź, czy objętość tego walca jest większa od  √ -- 18 3 . Odpowiedź uzasadnij.
Zadanie 8

Promień i wysokość walca mają jednakową długość. Pole powierzchni bocznej wynosi 200 π . Oblicz pole podstawy walca.

Arkusz Wersja PDF
spinner