Zestaw użytkownika nr 7845_9934
Zestaw użytkownika
nr 7845_9934
Suma drugiego, czwartego i szóstego wyrazu ciągu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego i trzeciego jest równa 185. Wyznacz pierwszy wyraz i różnicę tego ciągu.
Paweł zamówił szybę w kształcie rombu o przekątnych 40 cm i 30 cm. Zaproponował szklarzowi, by wyciął romb z prostokątnego kawałka szyby, tak jak na rysunku. Jakie wymiary ma ten prostokątny kawałek szyby?
W roku 2005 na uroczystości urodzin zapytano jubilata, ile ma lat. Jubilat odpowiedział: „Jeśli swój wiek sprzed 10 lat pomnożę przez swój wiek za 11 lat, to otrzymam rok mojego urodzenia". Ułóż odpowiednie równanie, rozwiąż je i zapisz, w którym roku urodził się ten jubilat.
Ewa jadąc drogą widziała elektrownię wiatrową oznaczoną na rysunku literą . Z punktu widziała ją pod kątem stopni do kierunku drogi. A z punktu pod kątem . Przejeżdżając przez punkt minęła elektrownię. Długość odcinka jest równa 20km.
- Oblicz miary kątów i .
- Oblicz długość odcinka .
- Oblicz odległość elektrowni od drogi.
W rachunkach przyjmij, że .
Suma dwóch liczb równa jest 6. Znajdź te liczby, jeśli wiadomo, że suma podwojonego kwadratu jednej z nich i kwadratu drugiej jest najmniejsza z możliwych.
Samochód przebył w pewnym czasie 210 km. Gdyby jechał ze średnią prędkością o 10 km/h większą, to czas przejazdu skróciłby się o pół godziny. Oblicz, z jaką średnią prędkością jechał ten samochód.
Średni wiek w pewnej sześcioosobowej grupie tematycznej na konferencji naukowej wynosił 49 lat. Najmłodszy uczestnik zrezygnował i wówczas średnia wieku wzrosła do 53 lat. Ile lat miał najmłodszy uczestnik?
Wazon ma kształt sześcianu, w którym wydrążony jest walec w taki sposób, że styczne górnej podstawy walca, równoległe do odpowiednich krawędzi górnej podstawy sześcianu, są odległe o 1 cm od tych krawędzi; natomiast odległość między dolną podstawą walca, a dolną podstawą sześcianu (grubość dna) jest równa 2 cm.
Wiedząc, że stosunek objętości walca do objętości sześcianu jest równy , oblicz
- długość krawędzi sześcianu;
- objętość walca;
- do jakiej wysokości wazonu (licząc od dolnej podstawy walca) będzie sięgać poziom wody, jeśli wlejemy do wazonu 125 ml wody. Wynik podaj z dokładnością do 1 mm.
Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 5 dają resztę 2 wynosi 30950. Wyznacz najmniejszą i największą z tych liczb.
Zbiornik wodny o objętości 14700 litrów napełniono w całości wodą w następujący sposób. W ciągu pierwszej godziny nalano 800 litrów wody, a w ciągu każdej kolejnej godziny nalewano o 10 litrów mniej. Przez ile godzin napełniano zbiornik?
Mamy dwa pojemniki: pierwszy ma kształt sześcianu, drugi - ostrosłupa prawidłowego czworokątnego. Przekątna sześcianu ma długość . Wysokość ostrosłupa tworzy ze ścianą boczną kąt o mierze . Pole powierzchni bocznej ostrosłupa jest równe . Sprawdź na podstawie odpowiednich obliczeń, czy woda wypełniająca całkowicie pierwszy pojemnik zmieści się w drugim pojemniku.
Suma kwadratów trzech kolejnych liczb naturalnych wynosi 149. Wyznacz te liczby.
W dwóch naczyniach jest woda. Gdyby z pierwszego naczynia przelano do drugiego 2 litry wody, to w obu naczyniach byłoby jej tyle samo. Gdyby zaś z drugiego do pierwszego przelano 3 litry wody, to w pierwszym naczyniu byłoby jej sześć razy więcej niż w drugim. Ile jest wody w obu naczyniach?
W pewnej klasie liczba dziewcząt stanowi 60% liczby osób w tej klasie. Gdy 6 dziewcząt wyjechało na mecz siatkówki, w klasie pozostało tyle samo chłopców, ile dziewcząt. Oblicz, ile osób liczy ta klasa oraz ilu jest w niej chłopców.
Znajdź liczby i wiedząc, że suma liczby i potrojonej liczby jest równa 36, a iloczyn liczb a i b jest największy z możliwych.