Zestaw użytkownika nr 7890_2304
Zestaw użytkownika
nr 7890_2304
O zdarzeniach i wiadomo, że , oraz . Oblicz prawdopodobieństwo zdarzenia .
W urnie jest 7 kul czarnych i 5 białych. Sześć z nich przekładamy do drugiej urny, początkowo pustej, i z niej losujemy 2 kule bez zwracania. Jakie jest prawdopodobieństwo, że druga z nich będzie biała.
W urnie znajdują się jedynie kule białe i czarne. Kul białych jest trzy razy więcej niż czarnych. Oblicz, ile jest kul w urnie, jeśli przy jednoczesnym losowaniu dwóch kul prawdopodobieństwo otrzymania kul o różnych kolorach jest większe od .
W zbiorze , gdzie jest liczbą naturalną, zmieniono znaki na przeciwne trzem losowo wybranym liczbom. Wiadomo, że prawdopodobieństwo tego, że suma wszystkich liczb w zbiorze nie uległa zmianie wynosi . Wyznacz .
Ze zbioru liczb , , losujemy jednocześnie dwie liczby. Niech oznacza zdarzenie: iloczyn wylosowanych liczb będzie liczbą parzystą. Wyznacz prawdopodobieństwo tego zdarzenia.
W urnie jest pewna liczba kul białych i jedna kula czarna. Losujemy jedną kulę z tej urny, zatrzymujemy ją, a następnie z pozostałych kul losujemy jedną kulę. Ile powinno być kul białych w urnie, aby prawdopodobieństwo wylosowania dwóch kul białych było równe ?
Ze zbioru losujemy kolejno 4 cyfry bez zwracania, a następnie zapisujemy je w kolejności losowania tworząc liczbę 4 cyfrową. Ile można otrzymać w ten sposób
- dowolnych liczb?
- liczb podzielnych przez 25?
Ile jest takich czwórek liczb całkowitych i dodatnich , które spełniają równanie .
Ile jest liczb naturalnych czterocyfrowych takich, że w ich zapisie dziesiętnym występuje jedna cyfra nieparzysta i trzy cyfry parzyste?
Uwaga: przypominamy, że zero jest liczbą parzystą.