Zestaw użytkownika nr 8140_6887
Zestaw użytkownika
nr 8140_6887
Wazon ma kształt sześcianu, w którym wydrążony jest walec w taki sposób, że styczne górnej podstawy walca, równoległe do odpowiednich krawędzi górnej podstawy sześcianu, są odległe o 1 cm od tych krawędzi; natomiast odległość między dolną podstawą walca, a dolną podstawą sześcianu (grubość dna) jest równa 2 cm.
Wiedząc, że stosunek objętości walca do objętości sześcianu jest równy , oblicz
- długość krawędzi sześcianu;
- objętość walca;
- do jakiej wysokości wazonu (licząc od dolnej podstawy walca) będzie sięgać poziom wody, jeśli wlejemy do wazonu 125 ml wody. Wynik podaj z dokładnością do 1 mm.
Pan Piotrek ma działkę w kształcie czworokąta, jak na rysunku. Oblicz powierzchnię tej działki. Wynik zaokrąglij do 1 m.
Puszki z napojami chłodzącymi pakuje się w ramach promocji do kartonowych pudełek w kształcie walca. Średnica zewnętrzna puszki wynosi 8 cm, a jej wysokość 15 cm. Jaka jest minimalna objętość pudełka zawierającego cztery puszki? Wynik podaj z dokładnością do .
Objętość graniastosłupa prawidłowego trójkątnego jest równa , a pole powierzchni bocznej tego graniastosłupa jest równe 36. Oblicz sinus kąta, jaki tworzy przekątna ściany bocznej z sąsiednią ścianą boczną.
W pojemniku o kształcie walca o promieniu podstawy umieszczono dwie kule o promieniu , w ten sposób, że są do siebie styczne i każda z nich dotyka powierzchni bocznej walca, jak na rysunku. Jaka co najmniej musi być wysokość pojemnika, aby kule całkowicie się w nim mieściły. Oblicz objętość tego walca.
Powierzchnia boczna walca po rozwinięciu jest prostokątem, którego przekątna o długości tworzy z wysokością kąt o mierze .
- Wyprowadź wzór na objętość walca.
- Oblicz tę objętość dla i .
Trapez prostokątny o podstawach długości 4 i 5 oraz kącie ostrym równym obraca się wokół krótszej podstawy. Oblicz objętość otrzymanej bryły.
Podstawą graniastosłupa prostego jest trójkąt prostokątny równoramienny. Kąt między przekątnymi, wychodzącymi z tego samego wierzchołka, dwóch prostopadłych ścian bocznych, ma miarę . Wiedząc, że objętość tego graniastosłupa jest równa , oblicz pole powierzchni całkowitej tej bryły.
Podstawą prostopadłościanu jest kwadrat o boku długości 4, a wysokość prostopadłościanu jest równa 8. Połączono odcinkami środki trzech krawędzi prostopadłościanu, z których żadne dwie nie leżą w jednej płaszczyźnie, i otrzymano trójkąt
- Oblicz długości boków trójkąta .
- Wyznacz miary kątów trójkąta .
W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość . Oblicz objętość tego ostrosłupa jeżeli ściana boczna jest nachylona do podstawy pod kątem .
Dany jest graniastosłup prawidłowy trójkątny o podstawach i i krawędziach bocznych i . Oblicz pole trójkąta wiedząc, że i . Narysuj ten graniastosłup i zaznacz na nim trójkąt .
Środek tworzącej stożka połączono z końcami i średnicy koła w podstawie stożka tak, że . Wiedząc, że kąt rozwarcia stożka jest równy , oblicz kąty trójkąta .