Zestaw użytkownika nr 8533_7721

Zestaw użytkownika
nr 8533_7721

Zadanie 1

Prosta k jest styczna do okręgu o równaniu  2 2 x + y − 6y − 16 = 0 . Odległość środka tego okręgu od prostej k jest równa
A) 9 B) 4 C) 25 D) 5

Zadanie 2

Punkty A = (− 3,1) i B = (2,3) są kolejnymi wierzchołkami kwadratu. Obwód tego kwadratu jest równy
A)  √ -- 4 5 B)  √ --- 4 17 C) 4√ 2-1 D) 4√ 2-9

Zadanie 3

Prosta l ma równanie y = − 2x + 3 . Równaniem prostej prostopadłej do l i przechodzącej przez punkt A = (4;− 4) jest:
A) y = 2x− 4 B) y = 12x− 6 C) y = 1x− 4 2 D) y = 2x − 6

Zadanie 4

Okrąg o równaniu  2 2 (x + 1 ) + (y + 2) = 2 :
A) nie przecina osi Ox ,
B) nie przecina osi Oy ,
C) przechodzi przez początek układu współrzędnych,
D) przechodzi przez punkt (− 1;− 2) .

Zadanie 5

Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach A = (− 2,− 4) oraz B = (− 5,2) . Jedno z jego ramion zawiera się w prostej o równaniu y = x − 2 . Oblicz współrzędne trzeciego wierzchołka trójkąta.

Zadanie 6

W układzie współrzędnych dane są dwa punkty: A = (− 2,2) i B = (4,4) .

  • Wyznacz równanie symetralnej odcinka AB .
  • Prosta AB oraz prosta o równaniu 3x − 2y − 1 1 = 0 przecinają się w punkcie C . Oblicz współrzędne punktu C .
Zadanie 7

O ile procent pole koła o promieniu długości 8 jest większe od pola koła wyznaczonego przez okrąg o równaniu x2 + y2 − 6x + 5 = 0 .

Zadanie 8

Wyznacz równania stycznych do okręgu  2 2 x + 6x + y − 8y + 21 = 0 równoległych do osi Oy .

Zadanie 9

Dane są dwa wierzchołki A (9,− 1) i B (−7 ,3) prostokąta ABCD oraz punkt E (4,− 4) należący do boku CD.

  • Wyznacz równanie prostej zawierającej bok CD ;
  • Oblicz współrzędne wierzchołka C;
  • Oblicz współrzędne punktu S przecięcia się przekątnych tego prostokąta.
Arkusz Wersja PDF
spinner