Zestaw użytkownika nr 8556_8987

Zestaw użytkownika
nr 8556_8987

Zadanie 1

Suma drugiego, czwartego i szóstego wyrazu ciągu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego i trzeciego jest równa 185. Wyznacz pierwszy wyraz i różnicę tego ciągu.

Zadanie 2

Dany jest ciąg arytmetyczny (an ) dla n ≥ 1 , w którym a 7 = 1, a11 = 9 .

  • Oblicz pierwszy wyraz a1 i różnicę r ciągu (an ) .
  • Sprawdź, czy ciąg (a ,a ,a ) 7 8 11 jest geometryczny.
  • Wyznacz takie n , aby suma n początkowych wyrazów ciągu (an) miała wartość najmniejszą.
Zadanie 3

Znajdź x , dla którego liczby  x+ 1 x+1 2,2 ,2 + 6 w podanej kolejności tworzą ciąg arytmetyczny.

Zadanie 4

Suma trzech początkowych wyrazów ciągu geometrycznego wynosi 26, różnica wyrazów czwartego i pierwszego wynosi 52. Oblicz piąty wyraz tego ciągu.

Zadanie 5

Długości boków trójkąta tworzą trzy kolejne wyrazy ciągu arytmetycznego o różnicy 1. Oblicz długości boków tego trójkąta, jeśli jego pole wynosi  √ --- 0,75 15 .

Zadanie 6

Dany jest ciąg  3n−-100 an = 2 .

  • Oblicz piętnasty wyraz tego ciągu.
  • Którym wyrazem tego ciągu jest liczba 10.
  • Ile wyrazów ujemnych ma ten ciąg?
Zadanie 7

Wyznacz pierwsze trzy wyrazy ciągu geometrycznego wiedząc, że są one dodatnie, ich suma jest równa 21 oraz suma ich odwrotności jest równa 172 .

Zadanie 8

W ciągu arytmetycznym (an) dane są wyrazy: a3 = 4, a 6 = 19 . Wyznacz wszystkie wartości n , dla których wyrazy ciągu (an ) są mniejsze od 200.

Zadanie 9

Dany jest rosnący ciąg geometryczny (an) dla n ≥ 1 , w którym a1 = x , a2 = 1 4 , a3 = y . Oblicz x oraz y , jeżeli wiadomo, że x+ y = 35 .

Zadanie 10

Ciąg  √ -- 36,12 6,24,... jest ciągiem geometrycznym.

  • Oblicz iloraz q tego ciągu.
  • Zapisz n -ty wyraz tego ciągu w postaci aqn
  • Oblicz sumę ośmiu początkowych wyrazów tego ciągu.
Zadanie 11

Liczby a,b,c są trzema kolejnymi wyrazami ciągu arytmetycznego, a liczby a + 1,b + 2,c + 6 – trzema kolejnymi wyrazami ciągu geometrycznego. Znajdź liczby a,b,c wiedząc, że ich suma jest równa 12.

Zadanie 12

Rosnące, trzywyrazowe ciągi arytmetyczny i geometryczny mają pierwsze wyrazy równe 9. Trzecie wyrazy tych ciągów są także równe. Drugi wyraz ciągu arytmetycznego jest o 2 większy od drugiego wyrazu ciągu geometrycznego. Wyznacz te ciągi.

Arkusz Wersja PDF
spinner