Zestaw użytkownika nr 9115_5140

Zestaw użytkownika
nr 9115_5140

Zadanie 1

Wyznacz najmniejszą i największą wartość funkcji f(x) = −(x − 2 )(x+ 1) w przedziale ⟨0 ;4⟩ .

Zadanie 2

Wyznacz wzór funkcji  2 f (x ) = 2x + bx + c w postaci kanonicznej wiedząc, że jej miejsca zerowe są rozwiązaniami równania |x − 3| = 5 .

Zadanie 3

Określ zbiór wartości funkcji:  2 3 f(x) = x − x− 4 . Dla jakich argumentów funkcja przyjmuje wartości ujemne?

Zadanie 4

Funkcja kwadratowa f ma tylko jedno miejsce zerowe, przyjmuje największą wartość dla argumentu -4, a do jej wykresu należy punkt A(1,− 50 ) . Napisz wzór funkcji f w postaci ogólnej.

Zadanie 5

Jedynym miejscem zerowym funkcji kwadratowej f jest liczba 2. Wykres funkcji f przecina oś Oy w punkcie o współrzędnych (0,− 2) . Wyznacz wzór tej funkcji w postaci ogólnej.

Zadanie 6

Funkcja kwadratowa f określona jest wzorem  2 f (x) = ax + bx . Wiadomo, że f (1) = − 4,f(− 1) = 8 . Określ, dla jakich argumentów spełniona jest nierówność f(x) > 0 .

Zadanie 7

Wyznacz wartość funkcji  2 f (x) = −x + 3x − 2 dla argumentu  √ -- x = 3 + 2 .

Zadanie 8

Funkcja  2−x- f(x) = x+b przyjmuje wartości ujemne wtedy i tylko wtedy gdy x < − 5 lub x > 2 .

  • Oblicz b .
  • Napisz wzór funkcji f w postaci kanonicznej.
  • Wyznacz zbiór tych argumentów, dla których funkcja f osiąga wartości nie większe niż funkcja  3x+8 g (x) = -x+5- .
Arkusz Wersja PDF
spinner