Zestaw użytkownika nr 9269_8781

Zestaw użytkownika
nr 9269_8781

Zadanie 1

Oblicz cosinus kąta jaki tworzą dwie ściany czworościanu foremnego. Podaj przybliżoną miarę tego kąta.

Zadanie 2

Czworościan foremny przecięto płaszczyzną przechodzącą przez krawędź boczną i wysokość podstawy. Jako przekrój otrzymano trójkąt o polu równym  √ -- 4 2cm 2 . Oblicz objętość tego czworościanu.

Zadanie 3

Podstawą graniastosłupa jest trójkąt prostokątny, w którym przeciwprostokątna ma długość 8 cm, a jeden z kątów ma miarę 30∘ . Powierzchnia boczna tego graniastosłupa po rozwinięciu na płaszczyznę jest kwadratem. Oblicz pole powierzchni całkowitej i objętość tego graniastosłupa.

Zadanie 4

Podstawą graniastosłupa prostego  ′ ′ ′ ′ ABCDA B C D jest równoległobok ABCD o bokach długości |AB | = 5 i |BC | = 4 . Oblicz długość wysokości A ′A graniastosłupa jeżeli |∡A ′BC | = 1 05∘ oraz |∡A ′CB | = 45∘ .

Zadanie 5

Dany jest graniastosłup prawidłowy czworokątny  ′ ′ ′ ′ ABCDA B C D o podstawach ABCD i A ′B ′C ′D ′ , oraz krawędziach bocznych AA ′,BB ′,CC ′ i DD ′ . Oblicz pole trójkąta BDC ′ wiedząc, że przekątna ściany bocznej ma długość 13 i jest nachylona do podstawy pod takim kątem α , że  12 tg α = 5 .

Zadanie 6

W graniastosłupie prawidłowym sześciokątnym poprowadzono płaszczyznę, która przechodzi przez dłuższą przekątną dolnej podstawy oraz przez jedną z krawędzi górnej podstawy. Płaszczyzna ta wyznacza przekrój graniastosłupa, który jest trapezem równoramiennym. Wiedząc, że w trapez ten można wpisać okrąg o promieniu 1, oblicz objętość graniastosłupa.

Zadanie 7

Podstawą graniastosłupa prawidłowego jest trójkąt, w którym długość wysokości wynosi  √ -- 6 3cm . Przekątne ścian bocznych wychodzące z jednego wierzchołka tworzą kąt o mierze 50∘ . Oblicz pole powierzchni całkowitej i objętość graniastosłupa. Wynik podaj z dokładnością do 1cm.

Zadanie 8

Podstawą ostrosłupa jest prostokąt o bokach 6cm i 8cm. Każda krawędź boczna jest nachylona do płaszczyzny podstawy pod katem 60∘ . Oblicz pole powierzchni ostrosłupa.

Zadanie 9

Pole powierzchni bocznej stożka jest cztery razy większe od pola podstawy. Obwód przekroju osiowego stożka jest równy 30. Oblicz objętość tego stożka

Arkusz Wersja PDF
spinner