Zestaw użytkownika nr 9489_9499

Próba przed maturą 2012poziom rozszerzonyCzas pracy: 180 min.

Zadanie 1
(6 pkt)

Dana jest funkcja  2+x- f(x ) = 4−x , gdzie x ∈ R ∖ {4} .

  • Wyznacz wszystkie punkty należące do wykresu funkcji f , których obie współrzędne są liczbami pierwszymi.
  • Podaj zbiór tych argumentów, dla których funkcja f przyjmuje wartości nieujemne.
  • Naszkicuj wykres funkcji g , jeśli  |f(x)| g(x ) = -f(x)- .

PIC

Zadanie 2
(4 pkt)

Ciąg (an) , gdzie n ∈ N + , określony jest następująco:

{ a1 = 2 an+1 = a3n dla n ≥ 1.

Wyznacz wszystkie wartości k , dla których suma k początkowych wyrazów ciągu (an) jest większa od 728 243 .

Zadanie 3
(4 pkt)

W trapezie prostokątnym ABCD na rysunku poniżej dane są: |AD | = 8 cm ,|DC | = 7 cm oraz |AC | = 13 cm .


PIC


Oblicz:

  • miarę kąta ostrego trapezu przy wierzchołku A ,
  • długość odcinka łączącego środki ramion tego trapezu.
Zadanie 4
(4 pkt)

Wykaż, że jeżeli x > 1, y > 1 i z > 1 , to logx z+ lo gyz ≥ 4⋅logxy z .

Zadanie 5
(5 pkt)

Wyznacz wszystkie wartości x , dla których ciąg (|x − 1|,2,|x+ 3|) jest malejącym ciągiem arytmetycznym.

Zadanie 6
(4 pkt)

W czworokącie wypukłym ABCD (zobacz rysunek poniżej) dane są kąty: |∡ADC | = |∡ABC | = 90∘ oraz |∡DCB | = 135∘ . Wykaż, że  √- |DB-|= -2- |AC | 2 .


PIC


Zadanie 7
(5 pkt)

Jednym z pierwiastków wielomianu W (x) stopnia trzeciego jest liczba 1, a suma pozostałych dwóch pierwiastków jest równa 0. Do wykresu tego wielomianu należy punkt A (3,1) . Wiedząc, że reszta z dzielenia wielomianu W (x) przez dwumian (x − 2) jest równa − 2 , wyznacz wzór tego wielomianu.

Zadanie 8
(4 pkt)

Wyznacz wszystkie wartości parametru p ∈ R , dla których równanie 3 cos2x = (p + 1)co sx ma w przedziale ( ) − 3π2 , π2 tylko trzy różne rozwiązania, z których dwa są ujemne, a jedno dodatnie.

Zadanie 9
(4 pkt)

Ze zbioru liczb {0,1,− 1,3 ,− 3 ,5 ,−5 ,...,2n+ 1,− 2n − 1} , gdzie n jest ustaloną liczbą naturalną, większą od 4, losujemy jednocześnie trzy liczby. Niech A oznacza zdarzenie: suma wylosowanych liczb nie ulegnie zmianie, jeżeli w wylosowanych liczbach zmienimy znaki na przeciwne. Wiedząc, że  -1- P (A ) = 133 , oblicz n .

Zadanie 10
(6 pkt)

W trójkącie ABC , w którym A = (− 2,− 2) oraz B = (4 ,4) , kąt przy wierzchołku B jest rozwarty. Bok AC zawiera się w prostej k : x− 3y − 4 = 0 . Środek okręgu opisanego na trójkącie ABC znajduje się w odległości √ --- 10 od boku AC . Wyznacz równanie tego okręgu.

Zadanie 11
(4 pkt)

Podstawą ostrosłupa jest romb, którego pole wynosi  2 800 cm , a kąt ostry rombu ma miarę 30∘ . Wysokość ostrosłupa jest równa 24 cm, a spodek tej wysokości jest środkiem okręgu wpisanego w podstawę. Oblicz:

  • promień tego okręgu,
  • pole powierzchni bocznej ostrosłupa.
Rozwiąż on-line Arkusz Wersja PDF
spinner