Zestaw użytkownika nr 9712_8923
Zestaw użytkownika
nr 9712_8923
W pudełku zmieszano 30 ziaren fasoli, 20 ziaren ciecierzycy i 50 ziaren grochu.
- Losujemy jedno ziarenko. Jakie jest prawdopodobieństwo wylosowania ziarenka ciecierzycy?
- Jako pierwsze wylosowano ziarenko fasoli. Jakie jest prawdopodobieństwo, że drugim wylosowanym ziarenkiem nie będzie ziarenko fasoli?
- Z pudełka usunięto po 10% ziarenek każdego rodzaju. Jakie jest prawdopodobieństwo wylosowania ziarenka fasoli?
Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr (cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo, że w losowo utworzonym kodzie PIN żadna cyfra się nie powtórzy. Wynik podaj w postaci ułamka nieskracalnego.
Ze zbioru losujemy liczbę , a ze zbioru liczbę . Oblicz prawdopodobieństwo tego, że .
Dane są trzy sześcienne kostki do gry: czerwona, niebieska i zielona. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że przy jednokrotnym rzucie trzema kostkami liczba otrzymana na niebieskiej kostce jest większa niż suma liczb otrzymanych na dwóch pozostałych kostkach.
Strzelając do tarczy pewien strzelec uzyskuje co najmniej 9 punktów z prawdopodobieństwem 0,5, a co najwyżej 9 punktów z prawdopodobieństwem 0,7. Oblicz prawdopodobieństwo, że ten strzelec uzyska dokładnie 9 punktów.
W pewnej grupie uczniów każdy zna język angielski lub niemiecki. Wiadomo, że prawdopodobieństwo wylosowania z tej grupy ucznia znającego język angielski jest równe , natomiast prawdopodobieństwo wylosowania ucznia znającego język niemiecki jest równe . Jakie jest prawdopodobieństwo tego, że losowo wybrany uczeń zna obydwa języki?
W jednej szufladzie znajdują się 3 szaliki czarne i 4 szaliki niebieskie, a w drugiej szufladzie są 2 czapki czarne i 1 niebieska. Wyjmujemy losowo jeden szalik i jedną czapkę. Które prawdopodobieństwo jest większe: zdarzenia , że otrzymamy komplet w jednym kolorze, czy zdarzenia , że otrzymamy czapkę i szalik w różnych kolorach? Odpowiedź uzasadnij, wykonując odpowiednie obliczenia.
W pudełku są cztery kartki, na których wypisano liczby (na każdej kartce jedną liczbę). Losujemy jedną kartkę, zapisujemy liczbę i zwracamy kartkę do pudełka. Następnie losujemy drugą kartkę i zapisujemy liczbę. Wylosowane liczby tworzą parę , gdzie jest liczbą wylosowaną za pierwszym razem, zaś liczbą wylosowaną za drugim razem. Oblicz prawdopodobieństwo zdarzenia
- – iloczyn wylosowanych liczb jest liczbą pierwszą;
- – różnica wylosowanych liczb jest liczbą parzystą.
W pewnej klasie okazało się, że są 3 osoby, które urodziły się w kwietniu tego samego roku i są dwie osoby, które urodziły się w lipcu tego samego roku. Oblicz prawdopodobieństwo, że troje z tych 5 uczniów urodziło się tego samego dnia roku.
Poniższy diagram przedstawia wyniki ankiety znajomości języków obcych wśród uczniów pewnej szkoły.
Oblicz prawdopodobieństwo, że losowo wybrana osoba z ankietowanych zna
- język angielski,
- co najmniej jeden język obcy.
Listonosz losowo rozmieszcza 4 listy w 6 skrzynkach na listy. Jakie jest prawdopodobieństwo, że przynajmniej dwa listy znajdą się w tej samej skrzynce?
Ze zbioru liczb całkowitych spełniających nierówność losujemy dwie różne liczby. Wylosowanie każdej liczby z tego zbioru jest jednakowo prawdopodobne. Oblicz prawdopodobieństwo wylosowania dwóch liczb pierwszych.
Ze zbioru liczb naturalnych spełniających nierówność losujemy dwie różne liczby . Oblicz prawdopodobieństwo zdarzenia: punkt o współrzędnych należy do wykresu funkcji .
Przedstawiono informacje dotyczące znajomości języka angielskiego oraz języka niemieckiego w pewnej 200 osobowej grupie studentów:
25% studentów zna język angielski i język niemiecki,
50% studentów zna język niemiecki,
60% zna język angielski.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrany z tej grupy student
- zna język angielski i nie zna języka niemieckiego,
- nie zna języka angielskiego i nie zna języka niemieckiego.
Windą, zatrzymującą się na 6 piętrach, jadą 4 osoby. Jakie jest prawdopodobieństwo tego, że każda osoba wysiądzie na innym piętrze?
W pewnej szkole 20% uczniów uczęszcza na kółko plastyczne, a 34% uczniów uczęszcza na kółko muzyczne. Wiadomo ponadto, że 58% uczniów nie uczęszcza na żadne z tych kółek. Oblicz jakie jest prawdopodobieństwo, że losowy wybrany uczeń tej szkoły uczęszcza jednocześnie na kółko plastyczne i muzyczne.
Rzucamy 3 razy kostką do gry. Oblicz prawdopodobieństwo, że kolejno otrzymane liczby utworzą ciąg arytmetyczny.