Zestaw użytkownika nr 9959_4329

Zestaw użytkownika
nr 9959_4329

Zadanie 1

Ania przeczytała książkę science-fiction, która miała 572 strony. Ania każdego dnia czytała o taką samą liczbę stron więcej, niż w dniu poprzednim. Ile dni Ania czytała tę książkę, jeżeli wiadomo, że w trzecim dniu Ania przeczytała 28 stron, a w ostatnim 68?

Zadanie 2

Długości boków trójkąta tworzą ciąg geometryczny. Jaki warunek spełniać musi iloraz tego ciągu?

Zadanie 3

Długości boków trójkąta są kolejnymi wyrazami rosnącego ciągu geometrycznego o ilorazie q , a cosinus jednego z jego kątów jest równy  q − 4 .

  • Wyznacz q .
  • Wiedząc, że promień okręgu opisanego na tym trójkącie ma długość  √ -- 2 2 , oblicz pole tego trójkąta.
Zadanie 4

Dla jakich wartości parametru m dziedziną funkcji  -----3x2−4mx+-5----- f(x ) = (m+2)x4+6(m+ 2)x2+m 2 jest zbiór liczb rzeczywistych?

Zadanie 5

Naszkicuj wykres funkcji  2 f (x) = |x − 4|− 2x . Określ liczbę rozwiązań równania f (x) = m w zależności od wartości parametru m .

Zadanie 6

Znajdź zbiór środków wszystkich okręgów stycznych wewnętrznie do okręgu o równaniu x2 + y2 = 4 i stycznych do prostej o równaniu y = 0 .

Zadanie 7

Ramiona kąta ostrego o mierze 2x przecięto prostą k prostopadłą do dwusiecznej kąta, która jest odległa o d od jego wierzchołka. W ten kąt wpisano dwa okręgi, każdy styczny do obu ramion kąta i prostej k . Oblicz odległość środków tych okręgów.

Zadanie 8

Odległość środka wysokości ostrosłupa prawidłowego trójkątnego od ściany bocznej jest równa d . Krawędź boczna tworzy z płaszczyzną podstawy kąt α . Oblicz objętość i pole powierzchni całkowitej ostrosłupa.

Zadanie 9

Miara kąta między ramionami trójkąta równoramiennego o polu P jest równa α . Oblicz promień okręgu wpisanego w ten trójkąt.

Arkusz Wersja PDF
spinner