Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR

Ciąg arytmetyczny

Definicja Ciąg (an ) nazywamy arytmetycznym jeżeli różnica każdych dwóch jego kolejnych wyrazów jest stała (nie zależy od n ).

W języku wzorów piszemy, że istnieje liczba r , dla której

a − a = r, dla n ≥ 1. n+1 n

Liczbę r nazywamy różnicą ciągu (a ) n .

Ciąg stały

(a,a,a,a,...)

jest ciągiem arytmetycznym o różnicy r = 0 .

Ciąg kolejnych liczb naturalnych jest ciągiem arytmetycznym o różnicy 1.

Ciąg parzystych liczb naturalnych jest ciągiem arytmetycznym o różnicy 2.

Ciągi skończone

(− 5,1,7) ( ) log4 ,log 2,0,log 1- 2 ( 1 1 1 ) -, -,-- 2 3 6

są arytmetyczne (z różnicami  1 1 6,log 2,− 6 odpowiednio).

Ciągi

(1,0 ,0,0,...) (1,0 ,1,0,1,0,...) (1,4 ,9,16,...)

nie są arytmetyczne, bo różnica kolejnych wyrazów zależy od tego, które wyrazy od siebie odejmujemy (nie jest stała).

Dlaczego arytmetyczny? Dlaczego ciąg o stałych różnicach kolejnych wyrazów nazywamy ciągiem arytmetycznym? Powodem jest bardzo użyteczna charakteryzacja takiego ciągu:

Ciąg jest ciągiem arytmetycznym wtedy i tylko wtedy, gdy każdy wyraz, z wyjątkiem pierwszego (i ostatniego jeżeli ciąg jest skończony) jest średnią arytmetyczną wyrazów sąsiednich.

W języku wzorów piszemy, że

 an− 1 + an +1 an = ------------, dla n ≥ 2. 2

Wykluczenie z powyższego warunku wyrazów pierwszego i ostatniego powinno być oczywiste – każdy z tych wyrazów ma tylko jednego sąsiada.

Ciąg (co s(− π),cos 0,cos π) nie jest arytmetyczny, bo

cos(−-π-)+-co-sπ- = −-1-−-1 = − 1 ⁄= cos 0. 2 2

Aby sprawdzić, czy ciąg

( 1) lo g4,log 2,0,log -- 2

jest ciągiem arytmetycznym wystarczy sprawdzić prawdziwość dwóch równości

 √ -- lo-g4-+-0-= 1-log4 = lo g 4 = lo g2 2 2 ( ) 1 1 lo-g2-+-log-2- lo-g--2⋅-2-- 2 = 2 = 0.

Wzory Jeżeli zapiszemy definicję ciągu arytmetycznego w postaci

a = an + r, dla n ≥ 1 n+1

to widać, że w ciągu arytmetycznym każdy kolejny wyraz powstaje z poprzedniego przez dodanie liczby r . To oznacza, że cały ciąg jest wyznaczony przez swój pierwszy wyraz a1 oraz różnicę r . Można to nawet powiedzieć dokładniej, n -ty wyraz powstaje z pierwszego przez dodanie n − 1 razy różnicy r (bo drugi powstaje przez dodanie raz r , trzeci przez dodanie dwa razy itd.). Daje to nam wzór na n -ty wyraz ciągu arytmetycznego.

an = a1 + (n− 1)r.

Ile jest równa 137 parzysta liczba trzycyfrowa?
Trzycyfrowe liczby parzyste tworzą ciąg arytmetyczny an , w którym a1 = 100 i r = 2 . Zatem

a137 = 100 + 136 ⋅2 = 37 2.

Wiedząc, że 15 wyraz ciągu arytmetycznego o różnicy -3 jest równy 77, obliczmy pierwszy wyraz tego ciągu. Liczymy

a15 = a1 + 14r = 77 ⇒ a1 = 77 − 14 ⋅(− 3) = 119.

Jest jeszcze jeden wzór do zapamiętania, mianowicie wzór na sumę n początkowych wyrazów ciągu arytmetycznego

Sn = a1 + a2 + ⋅⋅⋅+ an = a1 +-an-⋅n. 2

Jeżeli podstawimy w tym wzorze an = a1 + (n − 1)r , otrzymamy drugą wersję tego wzoru

S = 2a1-+-(n-−-1)r-⋅n. n 2

Obliczmy sumę 20 kolejnych liczb nieparzystych

1 + 3 + 5 + ⋅⋅⋅.

Mamy do czynienia z ciągiem arytmetycznym, w którym a1 = 1 i r = 2 . Stosujemy zatem drugi z wzorów aby obliczyć sumę 20 początkowych wyrazów tego ciągu.

S20 = 2-+-19-⋅2 ⋅20 = 20⋅ 20 = 400. 2

Zauważmy, że policzyliśmy tę sumę pomimo, że nawet nie wiemy ile jest równy 20 wyraz tego ciągu! Oczywiście możemy go wyliczyć

a20 = a1 + 19r = 1 + 19 ⋅2 = 39 ,

ale do policzenia sumy nie był on nam potrzebny.

Monotoniczność Dość oczywista własność, ale wyraźnie to napiszmy, bo czasem pojawia się w sformułowaniach zadań. Niech (a ) n będzie ciągiem arytmetycznym o różnicy r . Wtedy

  • ciąg (an ) jest rosnący wtedy i tylko wtedy, gdy r > 0 ;
  • ciąg (an ) jest malejący wtedy i tylko wtedy, gdy r < 0 ;
  • ciąg (a ) n jest stały wtedy i tylko wtedy, gdy r = 0 .

Sprawdźmy dla jakich wartości parametru p ciąg (a ) n dany wzorem  2 an = p− p n jest malejącym ciągiem arytmetycznym.
Zacznijmy od sprawdzenia, kiedy ciąg (an) jest ciągiem arytmetycznym. Liczymy różnicę kolejnych wyrazów

 2 2 2 an+1 − an = p − p (n+ 1)− (p− p n) = −p .

Skoro różnica nie zależy od n (jest stała), więc dla każdej wartości p mamy do czynienia z ciągiem arytmetycznym. Ciąg ten będzie malejący o ile r = −p 2 < 0 , czyli dla p ⁄= 0 .

Nie chcesz się rejestrować ani opłacać abonamentu? Zapłać przelewem 6,90 zł lub telefonicznie 8,90 zł, a otrzymasz dwudziestominutowy dostęp do wszystkich materiałów dostępnych w portalu.