Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 5805165

Zbadaj monotoniczność ciągu danego wzorem  -2--- an = 2− 2−3n .

Wersja PDF
Rozwiązanie

Aby sprawdzić monotoniczność ciągu musimy sprawdzić, czy różnica an+ 1 − an jest stale dodatnia (ciąg rosnący), czy też stale ujemna (ciąg malejący).

Aby uniknąć niepotrzebnej zabawy z minusami, zapiszmy wzór ciągu w postaci

 2 an = 2 + ------- 3n − 2

Liczymy różnicę kolejnych wyrazów

 2 2 3n − 2− (3n + 1) an+ 1 − an = 2+ 3n-+-1-− 2 − 3n-−-2-= 2 ⋅-(3n-+-1)(3n-−-2-) = = -------−-6------- < 0. (3n + 1)(3n − 2)

Zatem ciąg jest malejący.  
Odpowiedź: Ciąg jest malejący.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!