Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 6689327

Zbadaj monotoniczność ciągu danego wzorem  -4--- an = 2− 3−4n .

Wersja PDF
Rozwiązanie

Aby sprawdzić monotoniczność ciągu musimy sprawdzić, czy różnica an+ 1 − an jest stale dodatnia (ciąg rosnący), czy też stale ujemna (ciąg malejący).

Aby uniknąć niepotrzebnej zabawy z minusami, zapiszmy wzór ciągu w postaci

 4 an = 2 + ------- 4n − 3

Liczymy różnicę kolejnych wyrazów

 4 4 4n − 3− (4n + 1) an+ 1 − an = 2+ -------− 2 − -------= 4 ⋅------------------ = 4n + 1 4n − 3 (4n + 1)(4n − 3 ) = ------−-16------- < 0. (4n + 1)(4n − 3)

Zatem ciąg jest malejący.  
Odpowiedź: Ciąg jest malejący.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!