Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 5462951

Zbadaj monotoniczność ciągu  2+4+-6+-⋅⋅⋅+-2n an = n2 .

Wersja PDF
Rozwiązanie

W liczniku mamy sumę n kolejnych wyrazów ciągu arytmetycznego, więc

 2+-2n a = --2--⋅n- = n-+-1-. n n2 n

Aby sprawdzić monotoniczność ciągu sprawdzamy, czy iloraz kolejnych wyrazów jest mniejszy, czy też większy od 1 (ciąg ma wyrazy dodatnie).

an+ 1 nn++21- n(n + 2) n2 + 2n n 2 + 2n + 1 ----- = -n+1-= -------2-= -2----------< --2--------- = 1. an n (n + 1) n + 2n + 1 n + 2n + 1

Zatem ciąg jest malejący.  
Odpowiedź: Ciąg malejący.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!