Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9368360

Wierzchołki trójkąta ABC leżą na okręgu o środku O . BD jest średnicą tego okręgu. Jeśli kąt BAC ma miarę 66∘ , to kąt DBC ma miarę
A) 24∘ B) 4 8∘ C) 66∘ D) 12∘

Wersja PDF
Rozwiązanie

Zaczynamy od rysunku


PIC


Zauważmy, że kąty BAC i BDC są kątami wpisanymi opartymi na tym samym łuku, więc są sobie równe

|∡BAC | = |∡BDC | = 66 ∘.

Ponieważ kąt BCD jest jest oparty na średnicy, więc

|∡BCD | = 90∘.

Teraz łatwo obliczyć miarę kąta DBC

|∡DBC | = 180∘ − 90∘ − 66∘ = 24∘.

 
Odpowiedź: A

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!