/Szkoła średnia/Zadania testowe/Geometria/Planimetria/Trójkąt/Dowolny/Oblicz długość

Zadanie nr 4557092

Dodaj do ulubionych
Dodaj do rozwiązanych

W trójkącie ABC bok BC ma długość 13, a wysokość CD tego trójkąta dzieli bok AB na odcinki o długościach |AD | = 3 i |BD | = 12 (zobacz rysunek obok).


PIC


Długość boku AC jest równa
A) √ --- 34 B) 13 4 C)  √ --- 2 1 4 D)  √ --- 3 4 5

Rozwiązanie

Dwa razy korzystamy z twierdzenia Pitagorasa – pierwszy raz w trójkącie prostokątnym BCD , a drugi raz w trójkącie prostokątnym ADC .

 ∘ ------------ ∘ ---------- √ ---------- √ --- CD = BC 2 − BD 2 = 132 − 122 = 16 9− 144 = 25 = 5 ∘ ----2------2 ∘ -2----2 √ ------- √ --- AC = AD + CD = 3 + 5 = 9+ 25 = 34 .

 
Odpowiedź: A

Wersja PDF
spinner