Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 8144270

Rzucamy czterokrotnie symetryczną monetą. Prawdopodobieństwo, że otrzymamy co najmniej dwa orły jest równe
A) 1116 B) 58 C) 156 D) 7 8

Wersja PDF
Rozwiązanie

Obliczmy, ile jest zdarzeń elementarnych

|Ω | = 2⋅2 ⋅2 ⋅2 = 16.

Sposób I

Wypisujemy zdarzenia sprzyjające

(o,o,o,o) (r,o ,o,o),(o,r,o,o),(o,o,r,o),(o,o,o,r) (r,r,o,o ),(r,o,r,o),(r,o,o,r),(o,r,r,o),(o,r,o,r),(o,o,r,r).

Jest więc 11 zdarzeń sprzyjających i prawdopodobieństwo jest równe 11 16 .

Sposób II

Zdarzeń sprzyjających jest sporo, więc łatwiej jest wypisać zdarzenia, które nie są sprzyjające, czyli takie, w których otrzymaliśmy mniej niż dwa orły:

(r,r,r,r),(o,r,r,r),(r,o,r,r),(r,r,o,r),(r,r,r,o).

W takim razie zdarzeń sprzyjających jest 16 − 5 = 11 i prawdopodobieństwo jest równe 1116 .  
Odpowiedź: A

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!