Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9261100

Przekątna podstawy ostrosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości ostrosłupa. Ostrosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i środek jednej z krawędzi bocznych (patrz rysunek).


PIC


Płaszczyzna przekroju tworzy z podstawą ostrosłupa kąt α o mierze
A) 75∘ B) 6 0∘ C) 45∘ D) 30∘

Wersja PDF
Rozwiązanie

Dorysujmy wysokość ostrosłupa i rzut D środka krawędzi E na płaszczyznę podstawy.


PIC


W trójkącie prostokątnym ADE mamy

 1 tg α = ED--= 2AC--= AC--. AD 1AB AB 2

Z założenia AB = AC , więc tgα = 1 , czyli α = 45∘ .  
Odpowiedź: C

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!